首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
利用流体力学计算软件F luen t建立平板式阳极支撑固体氧化物燃料电池(SOFC)的三维数学模型。在阳极与阴极多孔电极中使用尘气模型模拟气体质量传输并采用B rinkm an-Forschhe im er-D acy模型来模拟多孔电极中黏性与惯性效应对气体流动的影响。研究给出了燃料气与空气在同向流与反向流情况下组分浓度、电压与温度分布。结果显示在同向流情况下,电池的最大功率密度较大与温度分布较均匀合理。研究给出了多孔电极结构参数(孔隙率、曲折因子与孔径尺寸)对电池性能的影响。结果表明比较计算的极化性能与文献的实验数据两者较好的吻合。  相似文献   

2.
A 1D dynamic solid oxide fuel cell (SOFC) model has been developed for real time applications. The model accounts for all transport and polarization phenomena by developing a system of governing differential equations over 1D control volumes. The 1D model is an improvement over existing 0D real time models in that it can more accurately predict the temperature and pressure variations along the cell while maintaining real time capabilities with regards to computational time. Several simplifications are required to maintain real time capabilities while improving the fidelity of the model.  相似文献   

3.
A reduced 1D dynamic model of a planar direct internal reforming SOFC (DIR-SOFC) is presented in this paper for system research by introducing two simplifications. The two simplification strategies employed are called Integration and Average, respectively. The present model is evaluated with a detailed 1D SOFC model, which does not introduce the two simplifications, and a lumped parameter (i.e., 0D) SOFC model. Results show that under the operating conditions investigated the accuracy of the reduced model is not significantly compromised by the two simplifications in prediction of the outlet gas flow rates and molar fractions, the outlet temperatures, and the cell voltage, while its computational time is significantly decreased by them. Moreover, it is quite simple in form. Therefore, the reduced SOFC model is attractive for system research. Compared with the lumped model, the reduced SOFC model is an improvement with regard to accuracy because it takes into account the spatially distributed nature of SOFCs to a certain extent. The discretized node number for solving the reduced model can be taken as an adjustable parameter in modeling, and is determined according to specific modeling requirements.  相似文献   

4.
Simulations of multiphase flow and phase change heat transfer in microchannels require accurate calculation of the surface tension force to provide accurate interface locations and to avoid spurious velocities that distort the flow at the interface. Building on previous work, where we implemented a 2D height function technique, the 3D height function method has been modified and implemented in ANSYS Fluent to enable such calculations to be performed on structured meshes. Firstly, simulations are presented for test cases that demonstrate the correct and accurate calculation of the surface tension force. Then the model is used to investigate both Taylor bubble formation in a square section channel and the development of an elongated vapour bubble from a small spherical nucleated bubble in a heated channel.  相似文献   

5.
魏佳广  孙铁  冯世杰 《节能技术》2010,28(5):411-414,418
扭曲叶片作为离心泵的重要部件,其制作过程及精确程度是影响离心泵性能的重要因素。本文借助Pro/E造型平台,依据二维木模图来表达叶轮模型,提出了叶轮轴面投影及水力木模图的测绘方法,然后将叶片的数据导入造型软件并生成叶轮的实体造型,实现了离心叶轮的参数化设计,实例计算结果表明,提出的理论和方法是有效的,能够实现叶轮的快速高效设计。此方法生成的文件为进一步的叶轮流场数值模拟软件fluent、Ansys等仿真软件分析提供了接口文件。  相似文献   

6.
A validated 3 dimensional (3D) computational fluid dynamics model of a single cell proton exchange membrane fuel cell (PEMFC) was used for investigating convergence criteria. The simulation study was carried out using the commercial PEMFC simulation module built in to ANSYS FLUENT 12.1 software package and compared with published experimental data. Convergence data up to 19,000 iterations were collected in order to establish expectations for convergence errors and differences in convergence rates for different boundary conditions. Species mass fluxes and current density were used to perform a dual verification of experimentally verifiable simulation predictions. The results of the simulation showed that convergence trends were consistent for different boundary conditions and that the solution trends asymptotically to a final value with species mass flux errors approaching to constant values. The data were used to establish convergence criteria for future 3D PEMFC simulations where residual monitoring alone is insufficient to ensure convergence.  相似文献   

7.
利用三维不可压缩流体的k一占湍流运动数学模型,以计算流体力学为(CFD)理论基础,在Fluent环境下对所设计的矿车空调风道系统气流的三维流动特性模型进行进、出口风速的模拟仿真分析,并进行试验验证。试验结果表明,模型建立正确,模拟仿真分析结论可靠,对缩短矿车空调风道系统设计周期、提高产品设计可靠性具有指导意义。  相似文献   

8.
张大宝  冯俊小  谢晓燕 《工业加热》2009,38(3):32-36,46
建立了板坯加热的三维数学模型,采用内节点法对板坯进行了网格划分,采用全隐式有限差分法对数学模型进行了离散,最后采用无条件稳定的Douglas ADI方法对离散方程进行求解。运用Visual Basic编程工具编制了仿真计算软件,实施了“黑匣子”测试并根据测试结果对软件计算模块进行了修正。修正后软件的计算结果与测试结果对比最大相对误差1.99%,验证了软件的准确可靠性。该软件的开发成功,为连续式加热炉的设计和优化生产提供了方便可靠的计算工具。  相似文献   

9.
Fuel cells can be used to provide power for most electrical or electronic devices designed for operation from batteries or from conventional utility power sources. In this study, a three dimensional Computational Fluid Dynamics (CFD) simulation model has been developed and experimentally tested for an anode-supported planar SOFC that has bipolar plated for corrugation which serving as a gas channel and current collector. Experiments were performed on planar cross-flow type at different reactant flow rates, cell temperatures and pressures. In the experimental analysis, values varied from 0.12 L/min to 2 L/min for reactant and from 700 °C to 800 °C SOFC cell temperature. Thereby divergent operating parameters about cell parameters have been addressed. The conservation equations of momentum, energy and mass types are solved with the ANSYS FLUENT software in the proposed model. The maximum power density measured as 6 kW/m2 under optimum working conditions. The results also show that the current density and the inlet velocity of fuel gassed are the main parameters that drive the fuel utilization and the total conversion efficiency. All the experimental and numerical findings, which were in good agreement with each other, showed that for Current density – Potential difference characteristic of SOFC cell graphs.  相似文献   

10.
In the present study a comprehensive numerical model of a planar cross-flow electrolyte-supported solid oxide fuel cell (SOFC) is reported. This model is solved in a 3D environment using COMSOL Multiphysics software. To verify the simulation results, an experimental set-up of a six-cell stack was built. Cell temperature and current–voltage measurements are used for validation of the simulation results. Good agreement between the simulation results and the experimental measurements is achieved. Temperature validation in addition to the popular current/voltage validation ensures that the model performs well in predicting local processes like chemical reactions. In this study methane-free biogas (CO2 + H2) is fed to the SOFC, and the performance of the system is investigated and explained. It is concluded that the methane-free biogas reduces the cooling air flow due to endothermic reverse water gas shift reaction and gives better current density distribution over the cell compared to hydrogen.  相似文献   

11.
In laboratory studies of solid oxide fuel cell (SOFC), performance testing is commonly conducted upon button cells because of easy implementation and low cost. However, the comparison of SOFC performance testing results from different labs is difficult because of the different testing procedures and configurations used. In this paper, the SOFC button cell testing process is simulated. A 2‐D numerical model considering the electron/ion/gas transport and electrochemical reactions inside the porous electrodes is established, based on which the effects of different structural parameters and configurations on SOFC performance testing results are analyzed. Results show that the vertical distance (H) between the anode surface and the inlet of the anode gas channel is the most affecting structure parameter of the testing device, which can lead to up to 18% performance deviation and thus needs to be carefully controlled in SOFC button cell testing process. In addition, the current collection method and the configuration of gas tubes should be guaranteed to be the same for a reasonable and accurate comparison between different testing results. This work would be helpful for the standardization of SOFC button cell testing.  相似文献   

12.
The aim of this study is, by using finite element analysis (FEA), to characterize the thermal stress distribution in a planar solid oxide fuel cell (SOFC) stack during various stages. The temperature profiles generated by an integrated thermo-electrochemical model were applied to calculate the thermal stress distributions in a multiple-cell SOFC stack by using a three-dimensional (3D) FEA model. The constructed 3D FEA model consists of the complete components used in a practical SOFC stack, including positive electrode–electrolyte–negative electrode (PEN) assembly, interconnect, nickel mesh, and gas-tight glass-ceramic seals. Incorporation of the glass-ceramic sealant, which was never considered in previous studies, into the 3D FEA model would produce more realistic results in thermal stress analysis and enhance the reliability of predicting potential failure locations in an SOFC stack. The effects of stack support condition, viscous behavior of the glass-ceramic sealant, temperature gradient, and thermal expansion mismatch between components were characterized. Modeling results indicated that a change in the support condition at the bottom frame of the SOFC stack would not cause significant changes in thermal stress distribution. Thermal stress distribution did not differ significantly in each unit cell of the multiple-cell stack due to a comparable in-plane temperature profile. By considering the viscous characteristics of the glass-ceramic sealant at temperatures above the glass-transition temperature, relaxation of thermal stresses in the PEN was predicted. The thermal expansion behavior of the metallic interconnect/frame had a greater influence on the thermal stress distribution in the PEN than did that of the glass-ceramic sealant due to the domination of interconnect/frame in the volume of a planar SOFC assembly.  相似文献   

13.
The purpose of this study is to present a 2D transient numerical model to predict the dynamic behavior of a tubular SOFC. In this model, the transient conservation equations (momentum, species and energy equations) are solved numerically and electrical and electrochemical outputs are calculated with an equivalent electrical circuit for the cell. The developed model determines the cell electrical and thermal responses to the variation of load current. Also it predicts the local EMF, state variables (pressure, temperature and species concentration) and cell performance for different cell load currents. Using this comprehensive model the dynamic behavior of Tubular SOFC is studied. First an initial steady state operating condition is set for the SOFC model and then the time response of the fuel cell to changes of some interested input parameters (like electrical load) is analyzed. The simulation starts when the cell is at the steady state in a specific output load. When the load step change takes place, the solution continues to reach to the new steady state condition. Then the cell transient behavior is analyzed. The results show that when the load current is stepped up, the output voltage decreases to a new steady state voltage in about 67 min.  相似文献   

14.
In this study, a typical solid oxide fuel cell (SOFC) electrode microstructure is numerically optimized in terms of the volume fraction of the catalyst, electrolyte and pore phases via a novel tool based on Dream.3D for the synthetic microstructure reconstruction and COMSOL Multiphysics® Modeling for visualizing and computing three/triple phase boundaries (TPBs). First, the properties of the representative volume element are studied by a parameter independence analysis based on the average particle size. The results indicate that the size of the representative volume element should be at least 10 times greater than the largest average particle size in the microstructure, while the number of mesh elements should be selected such that the smallest average particle size in the system is divided into at least 5. The method is then validated with the available studies in the literature and seems to agree well. Therefore, numerical reconstruction of SOFC electrodes by the proposed method is found to be a very useful tool in the viewpoints of accuracy, flexibility and cost. Finally, SOFC electrode microstructures having the same particle size distribution of an average particle size of 0.5 μm for each phase but with various phase volume fractions are generated and the resultant TPBs are computed similarly. It is found out that the volume fraction of each phase should be close to each other as much as possible to maximize the active TPB density and among the cases considered, the highest active TPB density of 9.53 μm/μm3 is achieved for an SOFC electrode including 35 vol% catalyst, 35 vol% electrolyte and 30 vol% porosity. The active TPB density is also found to be around 93% of the total TPB density.  相似文献   

15.
A numerical investigation of the steam methane reforming process using RANS is presented. The effect of the geometric dimensionality of the reformer on the numerical results is investigated by performing CFD simulations with 1D, 2D and 3D computational domains. The commercial software ANSYS Fluent is used for this comparative analysis. The numerical study is performed for the wide range of the residence time and the relative length (radius/length). The comparison study of 1D, 2D and 3D models on steam methane reforming is performed for same CFD-code, initial conditions, catalyst type, approximation scheme, the convergence criteria, the turbulence model, the type of solution initialization. The results show the distributions of the mole fraction of the reformate products, temperature, methane conversion rate and diffusion flux inside a 150 mm length and 10 mm radius of steam methane reformer that is filled by nickel based catalyst. The differences between the results for 1D and 3D geometry become insignificant at the residence time of about 8 kgcats/molCH4 and the relative length of 15. The difference between the results for 2D and 3D geometry is not significant as for 1D and 3D geometries. Almost similar results are achieved with residence time 4 kgcats/molCH4 and relative length 15. Therefore, for engineering calculations of steam methane reforming, it is sufficient to use a 1D model if the residence time is more than 8 kgcats/molCH4 and the relative length is more than 15. The 3D and 2D model should be used if the residence time and the relative length have a small value.  相似文献   

16.
Numerical simulations are carried out to study the effect of divergence angle and adverse pressure gradient on the movement of a shock wave train in a scramjet isolator. The commercial software tool ANSYS Fluent 16 was used to simplify the two-dimensional Reynolds-averaged Navier-Stokes equation with the compressible fluid flow by considering the density-based solver with the standard k-ε turbulence model. The species transport model with a single-step volumetric reaction mechanism is employed. Initially, the simulated results are validated with experimental results available in the open literature. The obtained results show that the variation of the divergence angle and backpressure on the scramjet isolator has greater significance on the flow field. Also, with an increase in the backpressure, due to the intense turbulent combustion, the shock wave train developed should expand along the length and also move towards the leading edge of the isolator leading to a rapid rise in the pressure so that the pressure at the entrance of the isolator can match the enhanced backpressures.  相似文献   

17.
A three-dimension (3D) kinetic Monte Carlo (kMC) model is developed to study the sintering kinetics and microstructure evolution of solid oxide fuel cell (SOFC) composite electrodes during the co-sintering processes. The model employs Lanthanum Strontium Manganite (LSM) – Yttria-stabilized Zirconia (YSZ) composites as the example electrodes but can be applied to other materials. The sintering mechanisms include surface diffusion, grain boundary migration, vacancy creation, and annihilation. A morphological dilation method is used to generate the initial LSM–YSZ compacts as the input structures for the kMC simulation. The three-phase boundary (TPB) length, porosity, and tortuosity factor of the composite cathodes are calculated during kMC sintering. Simulation results are compared with literature data and good agreement is found. Parametric study is conducted to investigate the effects of particle size, size distribution, and sintering temperature on sintering kinetics as well as the evolution of electrode microstructures. The kMC model is capable of simulating the initial and a part of intermediate sintering stages of SOFC electrodes by considering various sintering mechanisms simultaneously. It can serve as a useful tool to design and optimize the sintering processes for composite SOFC electrodes.  相似文献   

18.
In this paper a dynamic model of a single solid oxide fuel cell (SOFC) is developed using a volume element methodology. It consists of a set of algebraic and ordinary differential equations derived from physical laws (e.g., the first law of thermodynamics, Fick's law, and Fourier's law), which allow for the prediction of the temperature and pressure spatial distribution inside the single SOFC, as functions of geometric and operating parameters. The thermodynamic model is coupled with an electrochemical model that is capable of determining the voltage, current, and power output. Based on the simulation results, the internal configuration (structure of the positive electrode-electrolyte-negative electrode assembly) and the operating conditions (air stoichiometric ratio and fuel utilization factor), as well as their impact on the performance of the single SOFC are discussed. Optimal geometric and operating parameters are obtained so that electrical power of the single SOFC at the nominal operating point is maximized. The method used is general and the fundamental optimization results are sharp, showing up to a 357% single SOFC performance variation within the studied parameters’ range, therefore these findings show the potential to use the model as a tool for future SOFC design, simulation and optimization.  相似文献   

19.
陈曦  蔚敏 《工业加热》1996,(1):16-19
介绍应用计算机3D动画技术为RJZ型真空多用炉系统软件包配备三维动画的过程,阐述了其制作方法和效果,并对如何更有效地利用计算机3D动画技术的若干技术问题进行了探讨。  相似文献   

20.
A detailed numerical three-dimensional (3D) model for a planar solid oxide fuel cell (SOFC) is developed in this paper. The 3D model takes into account detailed processes including transport, chemical and electrochemical processes taking place in the cell. Moreover, effects of the composite electrodes are taken into account by considering an electrochemically active layer of finite thickness in each of the electrodes. The developed model is applied to a repeating unit of an anode-supported SOFC working under direct internal reforming conditions. Detailed results for chemical species, temperature, current density and electric potential distribution are presented and discussed. It was found that the temperature distribution across the cell is more uniform in the interconnects than in the inner part of the cell. However, only small differences in the electric potential between the electrode and the corresponding interconnect are found. The current density in the electrodes is found to be high near the electrolyte and low deep into the electrochemically active layer. The current density is also low under the ribs of the interconnects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号