首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
Type 4 700-bar compressed hydrogen storage tanks were modeled using ABAQUS. The finite element model was first calibrated against data for 35-L subscale test tanks to obtain the composite translation efficiency, and then applied to full sized tanks. Two variations of the baseline T700/epoxy composite were considered in which the epoxy was replaced with a low cost vinyl ester resin and low cost resin with an alternate sizing. The results showed that the reduction in composite weight was attributed primarily to the lower density of the resin and higher fiber volume fraction in the composite due to increased squeeze-out with the lower viscosity vinyl ester resin. The system gravimetric and volumetric capacities for the onboard storage system that holds 5.6 kg H2 are 4.2 wt% (1.40 kWh/kg) and 24.4 g-H2/L (0.81 kWh/L), respectively. The system capacities increase and carbon fiber requirement decreases if the in-tank amount of unrecoverable hydrogen is reduced by lowering the tank “empty” pressure. Models of an alternate tank design showed potential 4–7% saving in composite usage for tanks with a length-to-diameter (L/D) ratio of 2.8–3.0 but no saving for L/D of 1.7. A boss with smaller opening and longer flange does not appear to reduce the amount of helical windings.  相似文献   

2.
Finite element (FE) analysis of a filament wound 700-bar compressed hydrogen storage Type 4 tank is presented. Construction of the FE model was derived from an initial netting analysis to determine the optimal dome shape, winding angle, and helical and hoop layer thicknesses. The FE model was then used to predict the performance of the composite tank subject to the operating requirements and design assumptions, and to provide guidance for design optimization. Variation of the winding angle and helical layer thickness in the dome section was incorporated in the FE model. The analysis was used to determine the minimum helical and hoop layer thicknesses needed to assure structural integrity of the tank. The analysis also examined the use of “doilies” to reinforce the dome and the boss sections of the tanks to reduce the number of helical layers wound around the cylindrical section of the tank. The results of the FE analyses showed that the use of doilies reduces the stresses near the dome end but the stresses at the tank shoulder are not affected. A new integrated end-cap design is proposed to reinforce the dome section. With the integrated end-cap, FE analysis showed that the high stress points shift from the dome to the cylindrical section of the tank.  相似文献   

3.
燃料电池用氢气燃料的制备和存储技术的研究现状   总被引:1,自引:0,他引:1  
质子交换膜燃料电池(PEMFC)进行反应的燃料是高纯度氢气,氢气的制备和存储是质子交换膜燃料电池能否应用和规模化应用的先决条件和关键技术。对燃料电池用氢气的制备、纯化、存储技术的研究现状进行了综合分析。  相似文献   

4.
Cupric chloride is used as oxidant to synthesize polypyrrole doped with inorganic mineral (ImDPpy). The formation of ImDPpy was confirmed by 1HNMR, BET, SEM, HRTEM, DSC, FTIR, Raman, XRD, UV–vis and XPS studies. The surface area calculated for ImDPpy is 36.671 m2/g. Surface area of IMDPpy is 4.671 m2/g higher than the reported value of Ppy in the literature. In DSC, ImDPpy display a peak at 88.07 °C (endothermic glass transition temperature, Tg), Tg of ImDPpy is almost identical to that of Ppy-MWCNT composite and is higher than Tg of undoped Ppy. Electrochemical analysis of ImDPpy in 0.01 M NaOH indicated the maximum charge stored in ImDPpy in the form of protons as 8090 mF/g. The maximum hydrogen storage capacity of ImDPpy is found to be 18mAh/g at an applied current density of 1 mA/cm2. The mineral doped in Ppy during polymerization is identified as [Cu2(OH)3Cl] from XPS and Raman analysis.  相似文献   

5.
This work combines materials development with hydrogen storage technology advancements to address onboard hydrogen storage challenges in light-duty vehicle applications. These systems are comprised of the vehicle requirements design space, balance of plant requirements, storage system components, and materials engineering culminating in the development of an Adsorbent System Design Tool that serves as a preprocessor to the storage system and vehicle-level models created within the Hydrogen Storage Engineering Center of Excellence. Computational and experimental efforts were integrated to evaluate, design, analyze, and scale potential hydrogen storage systems and their supporting components against the Department of Energy 2020 and Ultimate Technical Targets for Hydrogen Storage Systems for Light Duty Vehicles. Ultimately, the Adsorbent System Design Tool was created to assist material developers in assessing initial design parameters that would be required to estimate the performance of the hydrogen storage system once integrated with the full fuel cell system.  相似文献   

6.
This paper designs an off-grid charging station for electric and hydrogen vehicles. Both the electric and hydrogen vehicles are charged at the same time. They appear as two electrical and hydrogen load demand on the charging station and the charging station is powered by solar panels. The output power of solar system is separated into two parts. On part of solar power is used to supply the electrical load demand (to charge the electric vehicles) and rest runs water electrolyzer and it will be converted to the hydrogen. The hydrogen is stored and it supplies the hydrogen load demand (to charge the hydrogen-burning vehicles). The uncertainty of parameters (solar energy, consumed power by electrical vehicles, and consumed power by hydrogen vehicles) is included and modeled. The fuel cell is added to the charging station to deal with such uncertainty. The fuel cell runs on hydrogen and produces electrical energy to supply electrical loading under uncertainties. The diesel generator is also added to the charging station as a supplementary generation. The problem is modeled as stochastic optimization programming and minimizes the investment and operational costs of solar and diesel systems. The introduced planning finds optimal rated powers of solar system and diesel generator, operation pattern for diesel generator and fuel cell, and the stored hydrogen. The results confirm that the cost of changing station is covered by investment cost of solar system (95%), operational cost of diesel generator (4.5%), and investment cost of diesel generator (0.5%). The fuel cell and diesel generator supply the load demand when the solar energy is zero. About 97% of solar energy will be converted to hydrogen and stored. The optimal operation of diesel generator reduces the cost approximately 15%.  相似文献   

7.
The U.S. Department of Energy (DOE) developed a vehicle Framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to Technical Targets established by DOE for four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be estimated easily. To address this challenge, a design tool has been developed that allows researchers to directly enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates system parameters required to run the storage system model. Additionally, the design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the Framework model. These models will be explained and exercised with the representative hydrogen storage materials exothermic ammonia borane (NH3BH3) and endothermic alane (AlH3).  相似文献   

8.
Stress distributions in the composite layers of a Type III hydrogen pressure vessel composed of a thin aluminum liner (5 mm) and a thick composite laminate (45 mm) were calculated by using three different modeling techniques. The results were analyzed and compared with the plausible stress distribution calculated by a full ply-based modeling technique. A laminate-based modeling technique underestimated the generated stresses especially at the border between the cylinder and dome parts. A hybrid modeling technique combining a laminate-based modeling for the dome part with a ply-based modeling for the cylinder part was also tried, but it overestimated the generated stresses at the border. In order for the ply-based modeling technique to carry out precise analysis, a fiber trajectory function for the dome part was derived and the composite thickness variation was also considered.  相似文献   

9.
Novel metal hydride (MH) hydrogen storage tanks for fuel cell electric forklifts have been presented in this paper. The tanks comprise a shell side equipped with 6 baffles and a tube side filled with 120 kg AB5 alloy and 10 copper fins. The alloy manufactured by vacuum induction melting has good hydrogen storage performance, with high storage capacity of 1.6 wt% and low equilibrium pressure of 4 MPa at ambient temperature. Two types of copper fins, including disk fins and corrugated fins, and three kinds of baffles, including segmental baffles, diagonal baffles and hole baffles, were applied to enhance the heat transfer in metal hydride tanks. We used the finite element method to simulate the hydrogen refueling process in MH tanks. It was found that the optimized tank with corrugated fins only took 630 s to reach 1.5 wt% saturation level. The intensification on the tube side of tanks is an effective method to improve hydrogen storage performance. Moreover, the shell side flow field and hydrogen refueling time in MH tanks with different baffles were compared, and the simulated refueling time is in good agreement with the experimental data. The metal hydride tank with diagonal baffles shows the shortest hydrogen refueling time because of the highest velocity of cooling water. Finally, correlations regarding the effect of cooling water flow rate on the refueling time in metal hydride tanks were proposed for future industrial design.  相似文献   

10.
This study proposes a multi-level model predictive control (MPC) for a grid-connected wind farm paired to a hydrogen-based storage system (HESS) to produce hydrogen as a fuel for commercial road vehicles while meeting electric and contractual loads at the same time. In particular, the integrated system (wind farm + HESS) should comply with the “fuel production” use case as per the IEA-HIA report, where the hydrogen production for fuel cell electric vehicles (FCEVs) has the highest unconditional priority among all the objectives. Based on models adopting mixed-integer constraints and dynamics, the problem of external hydrogen consumer requests, optimal load demand tracking, and electricity market participation is solved at different timescales to achieve a long-term plan based on forecasts that then are adjusted at real-time. The developed controller will be deployed onto the management platform of the HESS which is paired to a wind farm established in North Norway within the EU funded project HAEOLUS. Numerical analysis shows that the proposed controller efficiently manages the integrated system and commits the equipment so as to comply with the requirements of the addressed scenario. The operating costs of the devices are reduced by 5%, which corresponds to roughly 300 commutations saved per year for devices.  相似文献   

11.
This work investigates on the performance of a hybrid energy storage system made of a metal hydride tank for hydrogen storage and a lithium-ion battery pack, specifically conceived to replace the conventional battery pack in a plug-in fuel cell electric scooter. The concept behind this solution is to take advantage of the endothermic hydrogen desorption in metal hydrides to provide cooling to the battery pack during operation.The analysis is conducted numerically by means of a finite element model developed in order to assess the thermal management capabilities of the proposed solution under realistic operating conditions.The results show that the hybrid energy storage system is effectively capable of passively controlling the temperature of the battery pack, while enhancing at the same time the on-board storage energy density. The maximum temperature rise experienced by the battery pack is around 12 °C when the thermal management is provided by the hydrogen desorption in metal hydrides, against a value above 30 °C obtained for the same case without thermal management. Moreover, the hybrid energy storage system provides the 16% of the total mass of hydrogen requested by the fuel cell stack during operation, which corresponds to a significant enhancement of the hydrogen storage capability on-board of the vehicle.  相似文献   

12.
This paper examines the current state of the art of hydrogen refuelling stations-based production and storage systems for fuel cell hybrid electric vehicles (FCHEV). Nowadays, the emissions are increasing rapidly due to the usage of fossil fuels and the demand for hydrogen refuelling stations (HRS) is emerging to replace the conventional vehicles with FCHEVs. Hence, the availability of HRS and its economic aspects are discussed. In addition, a comprehensive study is presented on the energy storage systems such as batteries, supercapacitors and fuel cells which play a major role in the FCHEVs. An energy management system (EMS) is essential to meet the load requirement with effective utilisation of power sources with various optimizing techniques. A detailed comparative analysis is presented on the merits of Reinforcement learning (RL) for the FCHEVs. The significant challenges are discussed in depth with potential solutions for future work.  相似文献   

13.
Hydrogen has attracted attention worldwide with its favourable inherent properties to contribute towards a carbon-free green energy future. Australia aims to make hydrogen as its next major export component to economize the growing global demand for hydrogen. Cost-effective and safe large-scale hydrogen storage in subsurface geology can assist Australia in meeting the projected domestic and export targets. This article discusses the available subsurface storage options in detail by first presenting the projected demand for hydrogen storage. Australia has many subsurface formations, such as depleted gas fields, salt caverns, aquifers, coal seams and abandoned underground mines, which can contribute to underground hydrogen storage. The article presents basin-wide geological information on the storage structures, the technical challenges, and the factors to consider during site selection. With the experience and knowledge Australia has in utilizing depleted reservoirs for gas storage and carbon capture and sequestration, Australia can benefit from the depleted gas reservoirs in developing hydrogen energy infrastructure. The lack of experience and knowledge associated with other geostructures favours the utilization of underground gas storage sites for the storage of hydrogen during the initial stages of the shift towards hydrogen energy. The article also provides future directions to address the identified important knowledge gaps to utilize the subsurface geology for hydrogen storage successfully.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号