首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A catholyte is a key factor to hydrogen production in microbial electrolysis cells (MECs). Among the four groups of catholytes investigated in this study, a 100 mM phosphate buffer solution (PBS) resulted in the highest hydrogen production rate of 0.237 ± 0.031 m3H2/m3/d, followed by 0.171 ± 0.012 m3H2/m3/d with a 134 mM NaCl solution and 0.171 ± 0.004 m3H2/m3/d with the acidified water adjusted with sulfuric acid. The MEC with all catholytes achieved good organic removal efficiency, but the removal rate varied following the trend of the hydrogen production rate. The reuse of the catholyte for an extended period led to a decreasing hydrogen production rate, affected by the elevated pH. The cost of both the acidified water and the NaCl solution was much lower than the PBS, and therefore, they could be a better choice as an MEC catholyte with further consideration of cost reduction and chemical reuse/disposal.  相似文献   

2.
Platinum has excellent catalytic capabilities and is commonly used as cathode catalyst in microbial electrolysis cells (MECs). Its high cost, however, limits the practical applications of MECs. In this study, precious-metal-free cathodes were developed by electrodepositing NiMo and NiW on a carbon-fiber-weaved cloth material and evaluated in electrochemical cells and tubular MECs with cloth electrode assemblies (CEA). While similar performances were observed in electrochemical cells, NiMo cathode exhibited better performances than NiW cathode in MECs. At an applied voltage of 0.6 V, the MECs with NiMo cathode accomplished a hydrogen production rate of 2.0 m3/day/m3 at current density of 270 A/m3 (12 A/m2), which was 33% higher than that of the NiW MECs and slightly lower than that of the MECs with Pt catalyst (2.3 m3/day/m3). At an applied voltage of 0.4 V, the energy efficiencies based on the electrical energy input reached 240% for the NiMo MECs. These results demonstrated the great potential of using carbon cloth with Ni-alloy catalysts as a cathode material for MECs. The enhanced MEC performances also demonstrate the scale-up potential of the CEA structure, which can significantly reduce the electrode spacing and lower the internal resistance of MECs, thus increasing the hydrogen production rate.  相似文献   

3.
Non-platinum based cathodes were recently developed by electrodepositing NiMo on carbon cloth, which demonstrated good electrocatalytic activity for hydrogen evolution in microbial electrolysis cells (MECs). To further optimize the electrodeposition condition, the effects of electrolyte bath composition, applied current density, and duration of electrodeposition were systematically investigated in this study. The developed NiMo catalysts were characterized with scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) and evaluated using chronopotentiometry and in MECs. The optimal condition for electrodeposition of NiMo on carbon cloth was determined as: a Mo/Ni mass ratio of 0.65 in electrolyte bath, an applied current density of 50 mA/cm2 and electrodeposition duration of 10 min. Under this condition, the NiMo catalyst has a formula of Ni6MoO3 with a nodular morphology. The NiMo loading on the carbon cloth was reduced to 1.7 mg/cm2 and the performance of MEC with the developed NiMo cathode was comparable to that with Pt cathode with a similar loading. This result indicates that a much lower cathode fabrication cost can be achieved compared to that using Pt catalyst, and thereby significantly enhancing the economic feasibility of the MEC technology.  相似文献   

4.
Although pure Ni catalysts can achieve a hydrogen production rate similar to Pt in microbial electrolysis cells (MECs), a reduction in the amount of Ni used is needed to reduce the cost. In this study, nickel powder (pNi) was blended with activated carbon (AC) to reduce the mass of Ni used, while improving catalytic activity for the hydrogen evolution reaction (HER) by increasing the active surface area. Ni powder blended AC cathodes (AC-pNi) were fabricated at different nickel powder loadings (4.8, 19, 46 mg/cm2 with AC and 77 mg/cm2 without AC as control). AC-pNi4.8 (Ni loading: 4.8 mg/cm2) produced higher hydrogen production rates (0.38 ± 0.04 L-H2/L-d) than pNi77 (0.28 ± 0.02 L-H2/L-d) with a 16 times less Ni loading. Cathodic hydrogen recovery of using the AC-pNi4.8 (98 ± 5%) was also higher than pNi77 (82 ± 4%), indicating catalytic activities were improved by AC blending. Nickel dissolution into the catholyte after completion of each cycle was negligible for AC-pNi4.8 (<0.2 mg/L), while Ni dissolution was detected for pNi77 (5–10 mg/L). These results indicate that AC blending with Ni powder can improve hydrogen production in MECs while minimizing the amount of Ni in the cathode.  相似文献   

5.
Microbial electrolysis cell (MEC) is a bioelectrochemical technology that can produce hydrogen gas from various organic waste/wastewater. Extra voltage supply (>0.2 V) is required to overcome cathode overpotential for hydrogen evolution. In order to make MEC system more sustainable and practicable, it is necessary to minimize the external energy input or to develop other alternative energy sources. In this study, we aimed to improve the energy efficiency by intermittent energy supply to MECs (setting anode potential = −0.2 V). The overall gas production was increased up to ∼40% with intermittent energy input (on/off = 60/15sec) compared to control reactor. Cathodic hydrogen recovery was also increased from 62% for control MEC to 69–80% for intermittent voltage application. Energy efficiency was increased by 14–20% with intermittent energy input. These results show that intermittent voltage application is very effective not only for energy efficiency/recovery but also for hydrogen production as compared with continuous voltage application.  相似文献   

6.
Molasses is by-product from sugar beet process and commonly used as raw material for ethanol production. However, the molasses wastewater possesses high level of chemical oxygen demand (COD), which needs to be properly treated before discharge. In this work, MEC technology, a promising method for hydrogen production from organic waste, was utilized to produce H2 from molasses wastewater. In this study, the feasibility of operating the MEC at low temperatures was evaluated since the average wastewater temperature in Harbin city is lower than 10 °C. In addition, the feasibility of using biocathode as an alternative to expensive platinum (Pt) as the cathode material was also examined. Both Pt catalyzed MECs and biocathodic MECs were operated at a low temperature of 9 °C. The overall hydrogen recovery of 72.2% (Eap = 0.6 V) was obtained when the Pt catalyst was used. In contrast, when a cheaper catalyst (biocathode; Eap = 0.6 V) was used, hydrogen can still be produced but at a lower overall hydrogen recovery of 45.4%. This study demonstrated that hydrogen could be generation from molasses wastewater at a low temperature using a cheaper cathode material (i.e., biocathode).  相似文献   

7.
Hydrogen production with light as an additional energy source in a microbial electrolysis cell (MEC) is described. A ruthenium-dye (N719) sensitized solar cell with an open circuit potential (Voc) of 602 mV was connected to the MEC. Hydrogen production was carried out by irradiating the DSSC connected across the MEC with a light intensity of 40 mW/cm2 and also with natural sunlight. The DSSC was stable during various batch experiments. The acetate conversion efficiency and the coulombic efficiency based on the average of first two batches were 30.5 ± 2.5% and 40 ± 2% respectively. The cathodic recovery efficiency ranged from 72% to 86% during repeated batch experiments with an average of 78 ± 2.5%.  相似文献   

8.
Flakey cobalt was successfully recovered from aqueous Co(II) with simultaneous hydrogen production in microbial electrolysis cells (MECs). At applied voltages of 0.3–0.5 V, the yields of 0.81 mol Co/mol COD and 1.21 ± 0.03–1.49 ± 0.11 mol H2/mol COD were achieved while the energy efficiency relative to the electrical input was 22.5 ± 0.1–43.2 ± 0.7% (cobalt) and 170 ± 12–262 ± 7% (hydrogen), and the overall energy efficiency relative to both the electrical input and the energy of the anodic substrate averaged 9.4% (cobalt) and 62.8% (hydrogen). Cathode accumulated flakey crystals were verified as cobalt using both a scanning electron microscope capable of energy dispersive spectroscopy (SEM-EDS) and X-ray diffraction analysis (XRD). Dominant bacteria on the anodes and known as exoelectrogens or recalcitrant substance degraders included Geobacter uraniireducens, Comamonas nitrativorans, uncultured Geobacter sp., Acidovorax caeni, Pseudorhodoferax caeni, and Diaphorobacter nitroreducens. The evidence of influence factors including applied voltage, pH, solution conductivity, temperature and type of buffer can contribute to improving understanding of and optimizing cobalt recovery with simultaneous hydrogen production in MECs.  相似文献   

9.
To enhance hydrogen recovery from high-solid waste activated sludge (WAS), microbial electrolysis cells (MECs) were used as an efficient device. The effects of WAS concentrations were firstly investigated. Optimal concentration for hydrogen production was 7.6 g VSS/L. Maximum hydrogen yields reached to 4.66 ± 1.90 mg-H2/g VSS and 11.42 ± 2.43 mg-H2/g VSS for MECs fed with raw WAS (R-WAS) and alkaline-pretreated WAS (A-WAS) respectively, which was much higher than that obtained traditional anaerobic digestion. Moreover, no propionic acid accumulation was achieved at the optimal concentration. Effective sludge reduction was also achieved in MECs feeding with A-WAS. 52.9 ± 1.3% TCOD were removed in A-WAS MECs, meanwhile, protein degradation were 50.4 ± 0.8%. The 454 pyrosequencing analysis of 16S rRNA gene revealed the syntrophic interactions were existed between exoelectrogen Geobacter and fermentative bacteria Petrimonas, which apparently drove the efficient performance of MECs fed with WAS.  相似文献   

10.
DSBN+, a conjugated oligoelectrolyte (COE), was added to microbial electrolysis cells (MECs) to improve hydrogen recovery. The volume of hydrogen gas recovered in a fed-batch cycle of mixed culture MECs increased by 126× compared to controls (no COE addition), mainly by preventing the loss of hydrogen to methane production. Performance in pure culture MECs fed with Geobacter sulfurreducens increased by factors of 10.5 in terms of energy yield, 2.1 in COD removal, and 11.8 in hydrogen yield. Hydrogen gas recycling was reduced, and the volume of hydrogen gas recovered increased by 6.5× compared to controls. Minimal methane production and a lack of hydrogen gas uptake by G. sulfurreducens suggested that the COEs increased hydrogen recoveries by interfering with hydrogen uptake by hydrogenotrophic methanogens but also by exoelectrogenic bacteria. COEs may therefore be useful for inhibiting the activities of certain hydrogenases, although the mechanism of inhibition needs further investigation.  相似文献   

11.
Microbial electrolysis cells (MECs) provide a high-yield method for producing hydrogen from renewable biomass. One challenge for commercialization of the technology is a low-cost and highly efficient cathode. Stainless steel (SS) is very inexpensive, and cathodes made of this material with high specific surface areas can achieve performance similar to carbon cathodes containing a platinum catalyst in MECs. SS mesh cathodes were examined here as a method to provide a higher surface area material than flat plate electrodes. Cyclic voltammetry tests showed that the electrochemically active surface area of certain sized mesh could be three times larger than a flat sheet. The relative performance of SS mesh in linear sweep voltammetry at low bubble coverages (low current densities) was also consistent with performance on this basis in MEC tests. The best SS mesh size (#60) in MEC tests had a relatively thick wire size (0.02 cm), a medium pore size (0.02 cm), and a specific surface area of 66 m2/m3. An applied voltage of 0.9 V produced a high hydrogen recovery (98 ± 4%) and overall energy efficiency (74 ± 4%), with a hydrogen production rate of 2.1 ± 0.3 m3H2/m3d (current density of 8.08 A/m2, volumetric current density of 188 ± 19 A/m3). These studies show that SS in mesh format shows great promise for the development of lower cost MEC systems for hydrogen production.  相似文献   

12.
An alternative method for fabricating graphite fiber brush (GFB) electrodes was proposed. Two series of GFB electrodes with different lengths (L) and loaded fiber masses (m) were fabricated. The effects of m/L on the biomass distribution, active biomass content, electrochemical behavior and MFC performance were investigated. For the electrodes with a similar m but different L, substrate supply within the interior of GFB electrodes improved with L, leading to higher biomass content and consequently the improved performance. However, a complex trend was found for the electrodes with different m and similar L, due to the opposing trends of substrate supply and actual functional area for electrochemically active bacteria with m. Furthermore, m-normalized biomass content and power density of the GFB electrodes increased with decreasing of m/L ratio due to the improved graphite fiber utilization until 0.014 g mm−1, below which they remained constant since the utilization of graphite fibers plateaued.  相似文献   

13.
An affordable cathode material for microbial electrolysis cells (MECs) was synthesized via surface-modification of stainless steel mesh (SSM) by anodization. The anodization parameters, such as wire mesh size, temperature, applied voltage, operating time, were optimized. The surface-modified SSM (smSSM) exhibited porous surface and higher specific surface area. The as synthesized smSSMs were utilized as freestanding cathodes in a conventional microbial electrolysis cell (MEC) and a simultaneous dark fermentation and MEC process (sDFMEC). The H2 production in MEC and sDFMEC with smSSM as cathode was approximately 150% higher than that with SSM. The performance of smSSM was 67–75% of that of Pt/C. The sDFMEC with smSSM as cathode was stable for 12 cycles of fed-batch operation in 60 days. Overall, energy conversion from S. japonica by sDFMEC was as high as 23.4%.  相似文献   

14.
Nafion is commonly used as a catalyst binder in many types of electrochemical cells, but less expensive binders are needed for the cathodes in microbial electrolysis cells (MECs) which are operated in neutral pH buffers, and reverse electrodialysis stacks (RED),which use thermolytic solutions such as ammonium bicarbonate. Six different binders were examined based on differences in ion exchange properties (anionic: Nafion, BPSH20, BPSH40, S-Radel; cationic: Q-Radel; and neutral: Radel, BAEH) and hydrophobicity based on water uptake (0%, Radel; 17–56% for the other binders). BPSH40 had similar performance to Nafion based on steady-state polarization single electrode experiments in a neutral pH phosphate buffer, and slightly better performance in ammonium bicarbonate. Three different Mo-based catalysts were examined as alternatives to Pt, with MoB showing the best performance under steady-state polarization. In MECs, MoB/BPSH40 performed similarly to Pt with Nafion or Radel binders. The main distinguishing feature of the BPSH40 was that it is very hydrophilic, and thus it had a greater water content (56%) than the other binders (0–44%). These results suggest the binders for hydrogen evolution in MECs should be designed to have a high water content without sacrificing ionic or electronic conductivity in the electrode.  相似文献   

15.
The recent interest in microbial electrolysis cell (MEC) technology has led the research platform to develop full biological MECs (bioanode-biocathode, FB-MEC). This study focused on biohydrogen production from a biologically catalyzed MEC. A bioanode and a biocathode were initially enriched in a half biological MFC (bioanode-abiocathode, HB-MFC) and a half biological MEC (abioanode-biocathode, HB-MEC), respectively. The FB-MEC was established by transferring the biocathode of the HB-MEC and the bioanode of the HB-MFC to a two-chamber MEC. The FB-MEC was operated under batch (FB-MEC-B) and recirculation batch (FB-MEC-RB) modes of operation in the anodic chamber. The FB-MEC-B reached a maximum current density of 1.5 A/m2 and the FB-MEC-RB reached a maximum current density of 2.5 A/m2 at a similar applied voltage while the abiotic control system showed the maximum of 0.2 A/m2. Hydrogen production rate decreased in the FB-MEC compared to that of the HB-MEC. However, the cathodic hydrogen recovery increased from 42% obtained in the HB-MEC to 56% in the FB-MEC-B and 65% in the FB-MEC-RB, suggesting the efficient oxidation and reduction rates in the FB-MEC compared to the HB-MEC. The onset potential for hydrogen evolution reaction detected by linear sweep voltammetry analysis were −0.780 and −0.860 V vs Ag/AgCl for the FB-MEC-RB and the FB-MEC-B (−1.26 for the abiotic control MEC), respectively. Moreover, the results suggested that the FB-MEC worked more efficiently when the biocathode and the bioanode were enriched initially in half biological systems before transferring to the FB-MEC compared to that of the simultaneously enriched in one system.  相似文献   

16.
A biological hydrogen-producing system is configured through coupling an electricity-assisting microbial fuel cell (MFC) with a hydrogen-producing microbial electrolysis cell (MEC). The advantage of this biocatalyzed system is the in-situ utilization of the electric energy generated by an MFC for hydrogen production in an MEC without external power supply. In this study, it is demonstrated that the hydrogen production in such an MEC-MFC-coupled system can be manipulated through adjusting the power input on the MEC. The power input of the MEC is regulated by applying different loading resistors connected into the circuit in series. When the loading resistance changes from 10 Ω to 10 kΩ, the circuit current and volumetric hydrogen production rate varies in a range of 78 ± 12 to 9 ± 0 mA m−2 and 2.9 ± 0.2 to 0.2 ± 0.0 mL L−1 d−1, respectively. The hydrogen recovery (RH2), Coulombic efficiency (CE), and hydrogen yield (YH2) decrease with the increase in loading resistance. Thereafter, in order to add power supply for hydrogen production in the MEC, additional one or two MFCs are introduced into this coupled system. When the MFCs are connected in series, the hydrogen production is significantly enhanced. In comparison, the parallel connection slightly reduces the hydrogen production. Connecting several MFCs in series is able to effectively increase power supply for hydrogen production, and has a potential to be used as a strategy to enhance hydrogen production in the MEC-MFC-coupled system from wastes.  相似文献   

17.
In this work, a dual-chamber microbial electrolysis cell (MEC) with concentric cylinders was fabricated to investigate hydrogen production of three different lignocellulosic materials via simultaneous saccharification and fermentation (SSF). The maximal hydrogen production rate (HPR) was 2.46 mmol/L/D with an energy recovery efficiency of 215.33 % and a total energy conversion efficiency of 11.29 %, and the maximal hydrogen volumetric yield was 28.67 L/kg from the mixed substrate. The concentrations of reducing sugar and organic acids, the pH, and the current in the MEC system during hydrogen production were monitored. The concentrations of reducing sugar, butyrate, lactate, formate, and acetate initially increased during SSF and then decreased due to hydrogen production. Moreover, the highest current was obtained from the mixed substrate, which means that the mixed substrates are beneficial to microbial growth and metabolism. These results suggest that lignocellulosic materials can be used as substrate in a low-energy-input dual-chamber MEC system for hydrogen production.  相似文献   

18.
Hydrogen production in a microbial electrolysis cell (MEC) can be achieved by either setting the anode potential with a potentiostat, or by adding voltage to the circuit with a power source. In batch tests the largest total gas production (46 ± 3 mL), lowest energy input (2.3 ± 0.3 kWh/m3 of H2 generated), and best overall energy recovery (?E+S = 58 ± 6%) was achieved at a set anode potential of EAn = −0.2 V (vs Ag/AgCl), compared to set potentials of −0.4 V, 0 V and 0.2 V, or an added voltage of Eap = 0.6 V. Gas production was 1.4 times higher with EAn = −0.2 V than with Eap = 0.6 V. Methane production was also reduced at set anode potentials of −0.2 V and higher than the other operating conditions. Continuous flow operation of the MECs at the optimum condition of EAn = −0.2 V initially maintained stable hydrogen gas production, with 68% H2 and 21% CH4, but after 39 days the gas composition shifted to 55% H2 and 34% CH4. Methane production was not primarily anode-associated, as methane was reduced to low levels by placing the anode into a new MEC housing. These results suggest that MEC performance can be optimized in terms of hydrogen production rates and gas composition by setting an anode potential of −0.2 V, but that methanogen proliferation must be better controlled on non-anodic surfaces.  相似文献   

19.
In order to optimize operations of microbial electrolysis cell (MEC) for hydrogen production, microbial anode potential (MAP) was analyzed as a function of factors in biofilm anode system, including pH, substrate and applied voltage. The results in “H” shape reactor showed that MAP reflected the information when any factor became limiting for hydrogen production. Commonly, hydrogen generation started around anode potential of −250 mV to −300 mV. While, higher current density and higher hydrogen rate were obtained when MAP went down to −400 mV or even lower in this study. Biofilm anode could work normally between pH 6.5 and 7.0, while the lowest anode potential appeared around 6.8–7.0. However, when pH was lower 6.0 or substrate concentration was less than 50 mg L−1 in anode chamber, MAP went up to −300 mV or above, leading to hydrogen reduction. Applied voltage did not affect MAP much during the process of hydrogen production. Anode potential analysis also showed that planktonic bacteria in suspended solution presented positive effects on biofilm anode system and they contributed to enhance electron transfer by reducing internal resistance and lowering minimum voltage needed for hydrogen production to some extent.  相似文献   

20.
Although platinum is commonly used as catalyst on the cathode in microbial electrolysis cells (MEC), non-precious metal alternatives are needed to reduce costs. Cathodes were constructed using a nickel powder (0.5–1 μm) and their performance was compared to conventional electrodes containing Pt (0.002 μm) in MECs and electrochemical tests. The MEC performance in terms of coulombic efficiency, cathodic, hydrogen and energy recoveries were similar using Ni or Pt cathodes, although the maximum hydrogen production rate (Q) was slightly lower for Ni (Q = 1.2–1.3 m3 H2/m3/d; 0.6 V applied) than Pt (1.6 m3 H2/m3/d). Nickel dissolution was minimized by replacing medium in the reactor under anoxic conditions. The stability of the Ni particles was confirmed by examining the cathodes after 12 MEC cycles using scanning electron microscopy and linear sweep voltammetry. Analysis of the anodic communities in these reactors revealed dominant populations of Geobacter sulfurreduces and Pelobacter propionicus. These results demonstrate that nickel powder can be used as a viable alternative to Pt in MECs, allowing large scale production of cathodes with similar performance to systems that use precious metal catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号