首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
We have prepared a nanocomposite hybrid film to produce a collaborative network of gold (Au) nanoparticles that are highly dispersed on reduced graphene oxide (RGO) sheets, and tested it for electrocatalytic hydrogen production. The RGO/Au nanocomposite film synthesized on glassy carbon electrode (GCE) allows significant improvements to the electron-transfer process. The Au nanoparticles decorated on the surface of graphene increases the electron density, which synergistically promote the adsorption of hydrogen atoms on the graphene sheets and consequently enhance the hydrogen evolution reaction (HER) activity. The surface properties of the composite was characterized by field-emission scanning electron microscopy (FE-SEM) and the electrocatalytical performances evaluated as-prepared electrocatalyst toward (HER) by linear sweep voltammetry (LSV), Tafel polarization curves and electrochemical impedance spectroscopy (EIS) analyses. The GCE/RGO/Au nanohybrid electrode exhibited good catalytic activity for HER with an onset potential of ?0.3 V and a Tafel slope of 136 mV dec?1, achieving a current density of 10 mA cm?2 at an overpotential of ?0.43 V.  相似文献   

2.
Up to now, it is still a great challenge to develop active, durable and low-cost non-precious metal catalysts toward hydrogen evolution reaction (HER). In this paper, we synthesized ultrafine Co6Mo6C nanocrystals on reduced graphene oxide (RGO) support (Co6Mo6C/RGO). The Co6Mo6C/RGO shows Pt-like HER performance, which exhibits almost zero onset overpotential, and very small overpotential of 64 mV at 10 mA cm?2. In addition, the Co6Mo6C/RGO has a very small Tafel slope of 44 mV dec?1 and a high exchange current density of 0.402 mA cm?2, suggesting fast reaction kinetics. Furthermore, the Co6Mo6C/RGO demonstrates superior durability in acid electrolyte. The distinguished HER performance makes Co6Mo6C/RGO the promising candidate as non-precious metal catalyst for HER in acid electrolyte.  相似文献   

3.
Cu2O loaded reduced graphene oxide (Cu2O/RGO) was prepared via a one-step in-situ reduction method. Composition and structure of the Cu2O/RGO were characterized by X-ray diffraction, high resolution transmission electron microscope and X-ray photoelectron spectroscopy. With eosin Y (EY) and rose bengal (RB) as co-sensitizers, the activity of hydrogen evolution over the Cu2O/RGO dramatically increased and achieved a maximum when the loading amount of Cu on the RGO was about 3 wt.%. It exceeded that of RGO and Cu2O by a factor of 7.3 and 4.2 at the same conditions, respectively. It could be even comparable to that of the Pt/RGO under the same reaction conditions. This work showed a possibility of utilizing Cu2O as an alternative for noble metals (such as Pt) due to its low cost and high performance in photocatalytic hydrogen production.  相似文献   

4.
P-type Cu2O films with alkaline ions (Li+, Na+ and K+) of unintentional dopants on indium tin oxide coated glass substrate are successfully fabricated via a simple electrodeposition method for photoelectrochemical (PEC) hydrogen generation. The SEM and XRD analysis show the as-grown films with the pyramid-like morphology and cubic structure, and the composition of alkaline-doped Cu2O films are examined using XPS spectroscopy to demonstrate the substitution of alkaline ions in the Cu2O lattice. The optical analyses, including the absorbance and low-temperature photoluminescence spectra, confirm a bandgap of 2.3 eV and the presence of structural defects in alkaline-doped Cu2O films. The Mott-Schottky plot shows the flat band potentials of the alkaline-doped Cu2O films to be approximately ?0.1 V and the hole concentrations in the order of 1017 cm?3. Significantly, the Cu2O:Li film photocathode exhibits a higher photocurrent of ?2.2 mA cm?2 at a potential of ?0.6 V vs Ag/AgCl which are greater than those of Cu2O:K and Cu2O:Na films due to greater preferred orientation degrees along (111) and less structural defects, because the ionic radii of Cu and Li is similar. These results demonstrate the great potential of alkaline doped Cu2O films in solar-related applications.  相似文献   

5.
In present study, we report a facile synthesis of crystalline, small size Pd nanoparticles (NPs) on reduced graphene oxide (RGO) abbreviated as Pd/RGO for electrocatalytic oxidation of formic acid (FA). Here, first graphene oxide (GO) was reduced by the green method using l-ascorbic acid and citric acid and further Pd NPs were decorated on RGO by a facile method without using any reducing agents. The reduction of GO to RGO and synthesis of Pd NPs was confirmed by the X-ray diffraction (XRD) and X-ray photoelectrons (XPS) techniques. Surface morphology of Pd/RGO nanocomposite was evaluated by the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The electrocatalytic behavior of Pd/RGO nanocomposite was tested by using of cyclic voltammetric (CV) technique for electro-oxidation of FA in mixed solution of 0.5 M HCOOH + 0.5 H2SO4 at RT. Results shows that the higher electrocatalytic activity of Pd/RGO nanocomposite compare to Pd NPs.  相似文献   

6.
In this work, we report the synthesis of cuprous oxide (Cu2O) nanoparticles modified vertically oriented aligned titanium dioxide (TiO2) nanotube arrays through wet chemical treatment of TiO2 nanotubes and their multi-functional application as enhanced photo electrochemical and hydrogen generation. The synthesized samples were characterized by X-ray diffraction, SEM, TEM, and UV–Vis spectroscopy. The structural characterization revealed that the admixed Cu2O nanoparticles on the TiO2 surface did not alter its crystalline structure of vertically oriented aligned TiO2 nanotube. The photocatalytic performance and hydrogen generation of as synthesized Cu2O nanoparticles modified aligned TiO2 nanotube was found to highly depend on the Cu2O content. The optical characterizations reveal that the presence of Cu2O nanoparticles extends its absorption into the visible region which improves the photocurrent density in comparison to pristine aligned TiO2 nanotubes electrodes due to enhanced photoactivity and better charge separation. The optimum photocurrent density and hydrogen generation rate has been found to be 3.4 mA cm?2 and 127.5 μmole cm?2 h?1 in 1 M Na2SO4 electrolyte solution under 1.5 AM solar irradiance of white light with illumination intensity of 100 mW cm?2.  相似文献   

7.
The preparation of hydrogen evolution reaction (HER) electrocatalyst with high catalytic performance is a huge challenge. In this work, we develop a MoP/Fe2P/RGO composite as a electrocatalyst for HER. The MoP/Fe2P/RGO exhibits excellent electrocatalytic performance with a Tafel slope and an onset overpotential of 51 mV/dec and 105 mV, respectively. To drive 10 mA/cm2, it only requires a small over-potential of 156 mV. The high electrocatalytic HER activity is mainly due to the synergistic effect of MoP and Fe2P. In addition, the introduction of RGO not only prevents particle aggregation and coalescence during high temperature phosphating, but also improves the conductivity of the catalyst.  相似文献   

8.
Cost-effective non-noble metal catalysts are of key significance to the successful use of direct methanol fuel cells (DMFCs) for electricity generation. Herein, cuprous oxide nanoparticles (Cu2O NPs) supported graphene oxide (GO), polypyrrole (PPy) and polypyrrole–graphene oxide (PPy–GO) matrices were prepared using borohydride reduction method. The prepared catalysts were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–Vis spectra, Zeta potential and transmission electron microscopy (TEM). The elemental analysis of the composites was done by energy dispersive X-ray spectroscopy (EDX). Cu2O NPs were homogeneously dispersed and strongly anchored on the PPy grafted GO matrix and this was examined through morphological analysis. The Cu2O/PPy–GO (80:10:10) NPs exhibited noticeable improvement in electrochemical performance in comparison to pure graphene oxide (GO) and pure PPy supported Cu2O NPs catalyst and revealed the peak current density of 300 μA cm?2 at +0.68 V. The Cu2O/PPy–GO system demonstrated higher current density and also exhibited greater stability in comparison to the commercial Pt–Ru/C catalyst as characterized by chronoamperometry (CA) analysis. This prospective nano-catalyst showed higher IF/IB ratio (26%, 8.6% and 19%) compared to the corresponding catalyst systems of Cu2O/GO, Cu2O/PPy and Pt–Ru/C. In direct methanol fuel cell (DMFC), the efficiency of Cu2O/PPy–GO nano-catalyst system as an anode catalyst for methanol oxidation reaction (MOR) was investigated and the result revealed a maximum current density of 155 mA cm?2 at +0.2 V and power density of 31 mW cm?2. Hence, Cu2O/PPy–GO NPs are a cost-effective alternative for Pt–Ru/C system to execute practical application in DMFC.  相似文献   

9.
The sea urchin-like porous polyaniline (PPANI) is prepared by a facile saturated solution synthetic route. The porous polyaniline/reduced graphene oxide composite (PPANI/RGO) is synthesized via a solution-assisted self-assembly method. Mechanical alloying is used to obtain the Co9S8 alloy. Composites of Co9S8 mixed with PPANI and PPANI/RGO are fabricated through ball-milling to improve the electrochemical performance of Co9S8 alloy. The structures and morphologies of the composite alloys are studied by XRD, SEM and BET. The electrochemical properties of alloys are tested as negative electrodes of Ni-MH batteries by the LAND CT2001A tester and three-electrode system. For comparison, Co9S8 alloys doped with conventional polyaniline (CPANI) and RGO are also prepared. Ultimately, the Co9S8 + PPANI composite shows preferable discharge capacity compared with CPANI modified Co9S8 and matrix alloy. In addition, the PPANI/RGO composite modified Co9S8 electrode exhibits superior discharge capacity than separate PPANI and RGO coated alloys. A maximum discharge capacity (701.4 mAh/g) is achieved for Co9S8 + PPANI/RGO electrode. Furthermore, the Co9S8 + PPANI/RGO composite materials exhibit preferable high-rate dischargeability, improved corrosion and oxidation resistance and excellent kinetics properties. The PPANI material with special porous structure and unique morphology displays better performance than CPANI. Moreover, a synergistic effect between PPANI and RGO species in the PPANI/RGO material may provide a rapid passageway for charge transfer and accelerate the hydrogen transmission. Accordingly, the electrochemical activity and kinetic properties are improved for Co9S8 + PPANI/RGO composite electrode.  相似文献   

10.
Carbon based electrocatalysts are promising candidates to achieve the production of hydrogen energy in a sustainable wayby simple water splitting technique. Thermally treated reduced graphene oxide (RGO) and N–S doped RGO employing urea and thiourea as electrocatalysts for hydrogen evolution reaction (HER). The performance of electrochemical HER has been thoroughly examined via linear sweep voltammetry, electrochemical impedance spectroscopy and chronoamperometry. Furthermore, the Raman ID/IG ratio of RGO, N-RGO and NS-RGO were found to be 1.43, 1.10 and 1.11 respectively. From electrochemical HER analysis, we found that the NS-doped RGO exposed the low overpotential, low Tafel slope and low solution resistance value of 211 mV, 197 mV/dec and 0.34 Ω respectively. In addition, the chronoamperometry study revealed, the electrocatalyst NS-RGO showed an excellent stability (81.3% retention) with low 211 mV and remained unchanged for more than 16 h. Therefore, this work concludes that heteroatom dopant participate in improving electrocatalytic HER action.  相似文献   

11.
Herein, a novel surfactant-free nanocatalyst of Pd–Fe bimetallic nanoparticles (NPs) supported on the reduced graphene oxide (Pd–Fe/RGO) were synthesized using a two-step reduction in aqueous phase. Electrochemical studies demonstrate that the nanocatalyst exhibits superior catalytic activity towards the formic acid oxidation with high stability due to the synergic effect of Pd–Fe and RGO. The optimized Pd–Fe/RGO (Pd:Fe = 1:5) nanocatalyst possess an specific activity of 2.72 mA cm?2 and an mass activity of 1.0 A mg?1(Pd), which are significantly higher than those of Pd/RGO and commercial Pd/C catalysts.  相似文献   

12.
The oxygen–containing functional groups of graphene oxide (GO) play an important role in hydrogen storage. In addition to the contribution of the specific surface area and micro–porous porosity, the interactions of the functional groups with H2 molecules are also an important factor in the aspect of GO hydrogen storage. This paper explores the oxygen–containing functional groups affecting the hydrogen physisorption capacity of the GO and reduced graphene oxide (RGO) by experimental H2 adsorption measurement and theoretical calculation. Experimental results related to synthesis of GO and RGO via the modified Hummer's method and characterized using SEM, TEM, SAED, XRD, FTIR, TGA and Raman spectroscopy, are presented. Compared with RGO, the surface and edge of GO contain a large amount of oxygen–containing functional groups and its specific surface area is slightly increased through BET measurement. GO is found to exhibit better H2 uptake capacity (0.74 wt%) as compared to RGO (0.47 wt%) at 77 K and pressure up to 10 bars. The density functional theory is applied to optimize the adsorption configurations of H2 on the surface of samples. Calculation results show that the adsorption on the GO can be promoted by surface functional groups epoxy, hydroxyl, carboxyl and carbonyl; the enhancement of hydroxyl is greater than other species on the surface and the maximal adsorption energy reaches to ?0.112 eV which is about twice that of graphene. As indicated above, these functional groups could be formed easily on the graphene surface, which not only enhance specific surface area and interlayer spacing, but also significantly change the location of carbons, redistributing the electron structure of graphene and enhancing the adsorption energy.  相似文献   

13.
The conductivity type of cuprous oxide (Cu2O) thin films is tuned by controlling the deposition potential of an electrochemical process in an acid cupric acetate solution containing sodium dodecyl sulfate. The morphology and chemical composition of the deposited Cu2O films are studied by SEM, XRD and XPS. The change of the conductivity type of Cu2O films is further studied through zero-bias photocurrent and Mott-Schottky measurements. The results indicate that the Cu2O films behave as n-type semiconductors when the overpotentials are low (potentials higher than ?0.05 V) and p-type semiconductors when the overpotentials are high (potentials lower than ?0.10 V). The transformation of conductivity from n-type to p-type comes from the competition reactions between forming Cu2O and forming metallic Cu from Cu2+. When the potential is lower than ?0.10 V, most of Cu2+ are consumed by the growth of metallic Cu at the film/solution interface, so that the Cu2+ provided to grow Cu2O film are insufficient and copper vacancies form in the film, leading to the p-type conductivity.  相似文献   

14.
Hydrogen has attracted huge interest globally as a durable, environmentally safe and renewable fuel. Electrocatalytic hydrogen evolution reaction (HER) is one of the most promising methods for large scale hydrogen production, but the high cost of Pt-based materials which exhibit the highest activity for HER forced researchers to find alternative electro-catalyst. In this study, we report noble metal free a 3D hybrid composite of tungsten-molybdenum oxide and reduced graphene oxide (GO) prepared by a simple one step hydrothermal method for HER. Benefitting from the synergistic effect between tungsten-molybdenum oxide nanowires and reduced graphene oxide, the obtained W-Mo-O/rGO nanocomposite showed excellent electro-catalytic activity for HER with onset potential 50 mV, a Tafel slope of 46 mV decade?1 and a large cathodic current, while the tungsten-molybdenum oxide nanowires itself is not as efficient HER catalyst. Additionally, W-Mo-O/rGO composite also demonstrated good durability up to 2000 cycles in acidic medium. The enhanced and durable hydrogen evolution reaction activity stemmed from the synergistic effect broadens noble metal free catalysts for HER and provides an insight into the design and synthesis of low-cost and environment friendly catalysts in electrochemical hydrogen production.  相似文献   

15.
Porous graphene (P-rGO) was synthesized from graphene oxide (GO) via a one-pot calcination method with CO2 as an activation agent at 800 °C. Due to the special porous structure, the surface area of P-rGO can be increased to ~759 m2/g. The P-rGO was then used as a support to incorporate with chemical exfoliated molybdenum disulfide (MoS2) for the fabrication of MoS2/P-rGO composite. Compared to bulk MoS2, the exfoliated MoS2 is in the 1T phase with a metallic property and smaller charge transfer resistance, thus has a better activity in electrochemical hydrogen evolution reaction (HER). The HER activity of 1T MoS2 could be further increased after the combination with P-rGO. The overpotential of 1T MoS2/P-rGO was only ~130 mV vs. RHE, and the corresponding Tafel slope was ~75 mV Dec?1. The special porous structure and good electric conductivity of P-rGO decrease the charge transfer resistance of the composite without sheltering too many active sites of MoS2, thus leading to the enhanced HER activity. As an efficient noble metal free HER catalyst, the 1T MoS2/P-rGO has great potential for large-scale hydrogen production.  相似文献   

16.
Metallic (1T)-transition metal dichalcogenides is of excellent optical and electrical properties and so especially suitable for various applications including hydrogen evolution catalysis, electronics, and photoelectrons. To date, achieving 1T-MoS2 nanosheets with a simple chemical process still is a challenge. Here we report a hydrothermal synthesis of the 1T-MoS2 nanosheets by incorporating reduced graphene oxide (RGO) or using citric acid/slow successive heating. A small amount of RGO induced the formation of pure 1T-MoS2 nanosheets. Citric acid/slow successive heating induced the formation of 1T-MoS2 nanosheets with a small amount of 2HMoS2. Citric acid/slow successive heating also resulted in smaller average particle size in the present of RGO. Synthesized 1T-MoS2 nanosheets and RGO/1T-MoS2 nanosheet hybrids showed remarkably enhanced conduction and wettability compared with their semiconductor (2H)-nanostructures. Thus, dramatically enhanced hydrogen evolution catalytic activity and stability compared with the 2H-nanostructures were observed. RGO/1T-MoS2 nanosheet hybrids synthesized by incorporating graphene oxide and using citric acid/slow successive heating exhibited greatest photocatalytic activity (71.2 mmol./g·h) and electrocatalytic activity (onset potential of ?15 mV vs. reversible hydrogen electrode and Tafel slopes of 43 mV/decade). These facile processes might also be significant for the synthesis and application of other 1T-transition metal dichalcogenides nanosheets and their hybrids with RGO.  相似文献   

17.
By use of the theoretical method of density functional theory (DFT), we systemically investigate the chalcogen doped Cu4 metal clusters (Cu4O, Cu4S, and Cu4Se) as catalysts for the electrochemical CO2 reduction with toluene as solvent. These doped clusters have efficient catalytic properties which can reduce CO2 to CH4 and a small amount of CH3OH. In the case of CO2 hydrogenation to CH4, the reaction barrier of the Cu4O cluster and Cu4S cluster are reduced by 0.37 eV and 0.15 eV, respectively, compared with the pristine Cu4 cluster. The calculation results also show the overpotentials for the CO2 hydrogenation to CH4 in the order of Cu4S < Cu4O < Cu4Se. In?addition, the geometry structures, the electronic properties, and the reaction free energies on the chalcogen doped Cu4 clusters are also discussed to further reveal the reaction mechanism in the CO2 electroreduction process. We hope that our present work will enlighten extensive studies on the modified electrode to decrease the limiting potential and provide a reference for the subsequent studies.  相似文献   

18.
Co2B hydrogen storage material was prepared via a high temperature solid phase process. The TiO2 nanofibers (TiO2–NF) and TiO2 porous nanotubes (TiO2-NT) with different size, structure and morphology were fabricated by electrospinning and hydrothermal synthesis. In order to improve the conductivity, the reduced graphene oxide/TiO2 nanotubes composite (RGO/TiO2-NT) was synthesized by an alkaline hydrothermal process. The three-dimensional porous TiO2 nanotubes were attached to the two-dimensional RGO and formed a uniform dispersion. For the purpose of improving the electrochemical performance of Co2B, composites of Co2B doped with TiO2–NF, TiO2-NT and RGO/TiO2-NT were manufactured by ball milling. Ultimately, all the composite electrodes showed higher discharge capacities than ordinary Co2B. Among them, Co2B modified with RGO/TiO2-NT exhibited the highest discharge capacity (691.4 mAh/g). TiO2-NT with large specific surface area and unique tubular porous structure can offer sufficient electrochemical active sites to anchor hydrogen and improve the electrocatalytic activity of Co2B, meanwhile, the RGO component in RGO/TiO2-NT with excellent electrical conduction can further provide fast channels for charger transfer during the charging/discharging processes. Moreover, the corrosion resistance, HRD and kinetics performance of Co2B were also enhanced after doping of TiO2–NF, TiO2-NT and RGO/TiO2-NT.  相似文献   

19.
A rutile and anatase mixed crystal phase of nano-rod TiO2 and TiO2–reduced graphene oxide (TiO2–RGO) nanocomposites with small particle size were prepared via a facile hydrothermal approach with titanium tetrabutoxide and graphene oxide as the precursor. Hydrolysis of titanium tetrabutoxide and mild reduction of graphene oxide were simultaneously carried out. Compared with traditional multistep methods, a novel green synthetic route to produce TiO2–RGO without toxic solvents or reducing agents was employed. TiO2–RGO as anode of lithium ion batteries was characterized by extensive measurements. The nanocomposites exhibited notable improvement in lithium ion insertion/extraction behavior compared with TiO2, indicating an initial irreversible capacity and a reversible capacity of 295.4 and 112.3 mA h g−1 for TiO2–RGO after 100 cycles at a high charge rate of 10 C. The enhanced electrochemical performance is attributed to increased conductivity in presence of reduced graphene oxide in TiO2–RGO, a rutile and anatase mixed crystal phase of nano-rod TiO2/GNS composites, small size of TiO2 particles in nanocomposites, and enlarged electrode–electrolyte contact area, leading to more electroactive sites in TiO2–RGO.  相似文献   

20.
Polyaniline-multiwalled carbon nanotube (PANI-MWCNT) composite synthesized through chemical polymerization is investigated as a possible electrode material for supercapacitor as well as an electro-catalyst for hydrogen evolution reaction (HER) in acidic medium. UV–Vis spectroscopy, FTIR spectroscopy and field emission scanning electron microscopy (FESEM) have been used to characterize the electrode material. The binder-free electrodes were prepared and they exhibit a specific capacitance of 540.29 F g?1 at a scan rate of 2 mV s?1 in 1 M H2SO4 electrolyte. The material exhibits excellent pseudocapacitive behaviour due to the presence of PANI with long-term cyclic stability of 87.4% retention after 5000 cycles. PANI-MWCNT composite also shows good HER activity, with overpotential of ?395 mV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号