首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The enhancements in fuel cell performance and durability are crucial for the commercialization of polymer electrolyte fuel cells (PEFCs). Here, we deposit platinum nanoparticles on nitrogen doped carbon nanotubes (N-CNT) and continuously coat the electrocatalyst with nitrogen doped carbon (NC) layer derived from the carbonization of poly(vinyl pyrrolidone) (PVP). The NC-coated electrocatalyst shows stable electrochemical surface area (ECSA) during the potential cycling from 0.6 V to 1.0 V vs. RHE; while, the commercial and non-coated electrocatalysts lose 50% and 33% of initial ECSAs, respectively. Moreover, the NC-coated electrocatalyst shows higher oxygen reaction reduction (ORR) activity compared to non-coated electrocatalyst due to the additional nitrogen atoms in the electrocatalyst. The maximum power density of the coated electrocatalyst reaches 676 mW cm?2 with Pt loading of 0.1 mg cm?2, indicating that the mass power density of the electrocatalyst is one of the highest values in recently published literature. The NC layer is significantly important for simultaneous enhancements in durability and fuel cell performance.  相似文献   

2.
The design and development of inexpensive and highly efficient electrocatalysts for hydrogen production from water splitting are highly crucial for green energy and the hydrogen economy. Herein, we report phosphine reduced an iron-doped tungsten oxide nanoplate/reduced graphene oxide nanocomposite (Fe-WOxP/rGO) as an excellent electrocatalyst for the hydrogen evolution reaction. This electrocatalyst was synthesized using a hydrothermal method, followed by reduction with phosphine (PH3), which was generated from sodium hypophosphite. The catalyst onset potential, Tafel slope, and stability were investigated. Accordingly, Fe-WOxP/rGO exhibited impressively high electrocatalytic activity with a low overpotential of 54.60 mV, which is required to achieve a current density of 10 mAcm?2. The Tafel slope of 41.99 mV dec?1and the linear sweep voltammetry curve is almost the same as 2000 cycles and electrolysis under static overpotential (54.60 mV) is remain for more than 24 h in 0.5 M H2SO4. The catalytic activity and conductivity of Fe-WOxP/rGO were higher than WOXP, Fe-WOxP and WOxP/rGO. Such an outstanding performance of the Fe-WOxP/rGO nanocomposite is attributed to the coupled synergic effect between high oxygen vacancies formation on tungsten oxide in the nanoplate-like structure of Fe-WOxP and rGO nanosheet, making it as an excellent electrocatalyst for hydrogen evolution reaction.  相似文献   

3.
In this work, cobalt hydroxide nanoparticles are simply synthesized (size is about 50 nm) and deposited on the reduced graphene oxide nanoflake by the hydrothermal method. Then, the ability of glassy carbon electrode modified with this low-cost nanocomposite is examined as a supercapacitor and oxygen evolution electrocatalysts in 2.0 mol L?1 KOH by a three-electrode system. The modified electrode as a pseudocapacitor with potential windows of 0.35 V, exhibits a powerful specific capacitance (235.20 F g?1 at 0.1 A g?1 current density), energy density, stability (about 90% of the initial capacitance value maintain after 2000 cycles at 1.0 A g?1) and fast charge/discharge ability. Furthermore, the modified electrode displays a good electrocatalytic activity for oxygen evolution reaction with a current density of 10.0 mA cm?2 at 1.647 V, small Tafel slope of 56.5 mV dec?1, good onset potential of 1.521 V vs. RHE and suitable durability.  相似文献   

4.
Sulfured doped carbon electrocatalysts is synthesized from the waste biomass Sargassum spp. Two doping procedures are examined to determine which is better for Oxygen Reduction Reaction (ORR); one by doping biocarbon obtained from the pyrolysis of the biomass and the second through a process of in situ doping in autoclave. The electrocatalyst are obtained from pyrolysis of the sample at 700 °C, which is finally characterized as a metal free electrocatalyst for the ORR. The electrocatalyst are characterized by BET surface area analysis, Raman spectroscopy, X-ray Photoelectron Spectroscopy (XPS) and the electrochemical characterization is determined in 0.1 M KOH. The sample SSKPT-1 exhibits a promising electrocatalytic activity with an onset potential of 0.896 V vs RHE and a current density of 5 mA cm?2 (at 0.2 V vs. RHE) which could be partly attributed to its high BET surface area of 2755 m2 g?1.  相似文献   

5.
Bimetallic nanoparticles of Au and Ni in the form of alloy nanostructures with varying Ni content are synthesized on reduced graphene oxide (rGO) sheets via a simple solution chemistry route and tested as electrocatalysts towards the hydrogen evolution (HE) and oxygen reduction (OR) reactions using polarization and impedance studies. The AuNi alloy NPs/rGO nanocomposites display excellent electrocatalytic activity which is found to improve with increasing Ni content in the AuNi/rGO alloy nanocomposites. For HER, the best AuNi alloy NPs/rGO electrocatalyst, the one with the highest Ni content, exhibits high activity with an onset overpotential approaching zero versus the reversible hydrogen electrode and an overpotential of only 37 mV at 10 mA cm?2. Additionally, a low Tafel slope of 33 mV dec?1 and a high exchange current density of 0.6 mA cm?2 are measured which are very close to those of commercial Pt/C catalyst. Also, in the ORR tests, this electrocatalyst displays comparable activity to Pt/C. The Koutecky–Levich plots referred to a 4-electron mechanism for the reduction of dissolved O2 on the AuNi alloy NPs/rGO catalyst. The electrocatalyst thus demonstrates excellent activity towards HER and ORR. Additionally, it exhibits outstanding operational durability and activation after 10,000th cycles assuring its practical applicability.  相似文献   

6.
A layered binary Mn-Fe oxide as bi-functional electro-catalyst with nanopetals morphology is grown on porous carbon paper for the first time via one-step electrodeposition process. The electrocatalyst is characterized by X-ray diffraction, scanning electron microscopy (SEM) and energy dispersive spectroscopy analysis. SEM analysis demonstrates notable morphology viz. nanopetals of the Mn-Fe oxide grown on carbon paper. The electrocatalytic activity is checked for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline medium. Rotating disk electrode (RDE) voltammetry is carried out to study the ORR kinetics, which proves that ORR process follows four-electron pathway in alkaline medium. Oxygen evolution reaction study reveals that it has higher activity for OER with a lower onset potential of 1.6 V vs RHE and higher current density of 11.5 mA/cm2 at 2.0 V vs RHE reference electrode.  相似文献   

7.
In this study, new electrocatalysts for PEM fuel cells, based on Pt nanoparticles supported on hybrid carbon support networks comprising reduced graphene oxide (rGO) and carbon black (CB) at varying ratios, were designed and prepared by means of a rapid and efficient microwave-assisted synthesis method. Resultant catalysts were characterized ex-situ for their structure, morphology, electrocatalytic activity. In addition, membrane-electrode assemblies (MEAs) fabricated using resultant electrocatalysts and evaluated in-situ for their fuel cell performance and impedance characteristics. TEM studies showed that Pt nanoparticles were homogeneously decorated on rGO and rGO-CB hybrids while they had bigger size and partially agglomerated distribution on CB. The electrocatalyst, supported on GO-CB hybrid containing 75% GO (HE75), possessed very encouraging results in terms of Pt particle size and dispersion, catalytic activity towards HOR and ORR, and fuel cell performance. The maximum power density of 1090 mW cm?2 was achieved with MEA (Pt loading of 0.4 mg cm?2) based on electrocatalyst, HE75. Therefore, the resultant hybrid demonstrated higher Pt utilization with enhanced FC performance output. Our results, revealing excellent attributes of hybrid supported electrocatalysts, can be ascribed to the role of CB preventing rGO sheets from restacking, effectively modifying the array of graphene and providing more available active catalyst sites in the electrocatalyst material.  相似文献   

8.
We present a facile way to synthesize BSCF by using glycine-nitrate auto-combustion followed by annealing at different conditions, which work as high-performance bifunctional electrocatalyst for oxygen evolution (OER) as well as oxygen reduction (ORR) reactions in alkaline solution with comparatively better efficiency for OER. Annealing condition plays an important role towards catalytic performance due to morphological control and surface composition. Although, there is no significant change in onset potentials but these catalysts afford a current density >10 mA cm?2 at the potential of 1.65 V for oxygen evolution reaction and a current density >2.5 mA cm?2 at the potential of 0.009 V for oxygen reduction reaction with respect to RHE in 0.1 M KOH. The underlying mechanism for ORR and OER as well as catalytic activity differences were understood with the help of different analytical characterization techniques.  相似文献   

9.
Highly efficient bifunctional electrocatalysts for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are essential for the development of renewable energy technologies such as fuel cells and metal-air batteries. Herein, a ceria (CeO2) – modified reduced graphene oxide (CeO2/rGO) nanocomposite was fabricated via a facile yet cost-effective method under a mild condition. The prepared CeO2/rGO nanocomposite showed remarkable catalytic activity, high tolerance to methanol and durability toward ORR in alkaline media. Meanwhile, the catalyst also displayed remarkable activity for the OER with more negative onset potential and higher current compared with commercial Pt/C catalyst. The high oxygen reaction activity of the catalyst could contribute to synergistic effect of the combination of the oxygen vacancies of CeO2 and excellent electronic conductivity of rGO. The results suggested that the CeO2/rGO nanocomposite has potential advantages as a bifunctional electrocatalyst in the practical applications.  相似文献   

10.
Today the utilization of solar energy to split water and its conversion to hydrogen and oxygen has been considered as a powerful way to solve the environmental crisis. Hierarchical porous nanostructured ZnO and ZnO/reduced graphene oxide (rGO) composite photoanodes are synthesized by innovated sol-gel method using triethylenetetramine (TETA) as a stabilizer. The hierarchical porous ZnO structure containing large agglomerates each consisting of tiny nanoparticles are formed. The X-ray diffraction analysis and Raman spectroscopy confirm the in-situ reduction of graphene oxide sheets during synthesis and formation of ZnO/rGO nanocomposite. Although the band gap and transmittance of the porous nanocomposites do not dramatically change by rGO addition, the main photoluminescence peak quenches entirely showing prolonging exciton lifetime. The ZnO/rGO porous structure achieved remarkably improved current density (1.02 mA cm?2 at 1.5 V vs. Ag/AgCl) in 1 wt% rGO, up to 12 times higher compared to the bare ZnO (0.09 mA cm?2 at 1.5 V vs. Ag/AgCl), which attributes to positive role of ZnO hierarchical porous structure and rGO electron separation/transportation. These findings provide new insights into the broad applicability of this methodology for promising future semiconductor/graphene composite in the field of photoelectrochemical water splitting.  相似文献   

11.
Three-dimensional nitrogen-doped graphene (3D-NG@SiO2) is prepared by pyrolyzing poly (o-phenylenediamine) (POPD) with high nitrogen content. POPD is prepared via an in situ chemical oxidation polymerization of o-phenylenediamine (OPD) in acetic acid with silica colloid as templates. The optimum parameter is OPD:SiO2 = 1:2, pyrolysis @ 900 °C. SEM and TEM images show the wrinkled and porous graphene structures. Raman spectra indicate that 3D-NG@SiO2 consists of 4–6 layers graphene. N2 adsorption–desorption isotherms reveal that the pore size distributions mainly centralize at 5–10 nm. XRD illustrates the amorphous structure. XPS analysis shows that the nitrogen content is 3.6% and nitrogen mainly exists in the form of pyridinic nitrogen and pyrrolic nitrogen. The oxygen reduction reaction (ORR) performance investigated using a rotating disk electrode shows that the initial potential of 3D-NG@SiO2 is 0.08 V (vs. Hg/HgO). The electron transfer number is 3.92 @ ?0.3 V (vs. Hg/HgO), indicating that 3D-NG@SiO2 mainly occurs via a four-electron process. The oxygen reduction current density decreases by 21% after 60 h in the chronoamperometry test. The CVs manifests a current density loss of 0.16 mA cm?2 after scanning for 5000 cycles. The high activity and durability indicate the promising potential of 3D-NG@SiO2 as ORR catalysts.  相似文献   

12.
Here in, for the first time, we report a new and simple procedure for preparing reduced graphene oxide/nickel-cobalt double layered hydroxide composite on the nickel foam (Ni-Co LDH/rGO/NF) via a fast and simple two-step electrochemical method including potentiostatic routes in the presence of CTAB as a cationic surfactant. Graphene oxide coated nickel foam prepared by simple immersion method. After that, the prepared electrode reduced electrochemically to obtain rGO/NF electrode. Finally, the rGO/NF electrode was used as cathode for electrodeposition of Ni-Co LDH in the presence of CTAB as cationic surfactant. The prepared electrodes were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), Energy-dispersive X-ray spectroscopy (EDS), Brunauer, Emmett and Teller (BET) and electrochemical techniques such as voltammetry (CV), galvanostatic charge-discharge curves (GCD) and electrochemical impedance spectroscopy (EIS). The resulting electrode which prepared in the presence of CTAB afforded extremely high specific capacitance of 2133.3 F g?1 at a current density of 4 A g?1. FE-SEM, TEM and EDS mapping results showed that Ni-Co LDH nanosheets uniformly covered the surface of rGO/NF in the presence of CTAB, and is closely packed and thinner in thickness compared with the sample prepared in similar way without using surfactant. Such new thin and dense morphology facilitates electrolyte ions diffusion through the prepared electrode. A good cycling stability was obtained for the electrode in alkaline media. EIS measurements showed low values of internal resistance (Rs) and charge transfer resistance (Rct), indicating that the prepared nanocomposite is a promising candidate for supercapacitor applications. The asymmetric supercapacitor (ASC) based on the Ni-Co LDH/CTAB/rGO/NF as a positive electrode and rGO/NF as a negative electrode was assembled and it exhibited a Cs of 71.4 F g?1 at a current density of 2 A/g and correspondingly energy density of as high as 68 Wh kg?1.  相似文献   

13.
We have prepared a nanocomposite hybrid film to produce a collaborative network of gold (Au) nanoparticles that are highly dispersed on reduced graphene oxide (RGO) sheets, and tested it for electrocatalytic hydrogen production. The RGO/Au nanocomposite film synthesized on glassy carbon electrode (GCE) allows significant improvements to the electron-transfer process. The Au nanoparticles decorated on the surface of graphene increases the electron density, which synergistically promote the adsorption of hydrogen atoms on the graphene sheets and consequently enhance the hydrogen evolution reaction (HER) activity. The surface properties of the composite was characterized by field-emission scanning electron microscopy (FE-SEM) and the electrocatalytical performances evaluated as-prepared electrocatalyst toward (HER) by linear sweep voltammetry (LSV), Tafel polarization curves and electrochemical impedance spectroscopy (EIS) analyses. The GCE/RGO/Au nanohybrid electrode exhibited good catalytic activity for HER with an onset potential of ?0.3 V and a Tafel slope of 136 mV dec?1, achieving a current density of 10 mA cm?2 at an overpotential of ?0.43 V.  相似文献   

14.
Exploration of multifunctional non-precious metal catalysts towards oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is very important for many clean energy technologies. Here, two trifunctional catalysts based on M (Co, Ni), N and S tridoped carbon nanoplates (Co/N/S-CNPs and Ni/N/S-CNPs) are reported. Due to the relatively higher catalytic site content, graphitization degree and smaller charge-transfer resistance, the Co/N/S-CNPs catalyst shows higher activity and stability for ORR (onset potential of 0.99 V and half-wave potential of 0.87 V vs. RHE (reversible hydrogen electrode)), OER (overpotential at 10 mA cm?2 of 0.37 V) and HER than the Ni/N/S-CNPs catalyst. Furthermore, when constructed with the Co/N/S-CNPs and commercial 20 wt% Pt/C + Ir/C cathodes, respectively, Zn-air battery (ZnAB) based on the Co/N/S-CNPs cathode displays better performance, including a higher power density of 96.0 mW cm?2 and cycling stability at 5 mA cm?2. In addition, an alkaline electrolyzer assembled with the Co/N/S-CNPs catalyst as a bifunctional catalyst can reach 10 mA cm?2 at 1.65 V for overall water splitting and maintain excellent stability even after cycling for 12 h. The present work proves the potential of the Co/N/S-CNPs catalyst for many clean energy devices.  相似文献   

15.
The production of hydrogen, a favourable alternative to an unsustainable fossil fuel remains as a significant hurdle with the pertaining challenge in the design of proficient, highly productive and sustainable electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, the dysprosium (Dy) doped copper oxide (Cu1-xDyxO) nanoparticles were synthesized via solution combustion technique and utilized as a non-noble metal based bi-functional electrocatalyst for overall water splitting. Due to the improved surface to volume ratio and conductivity, the optimized Cu1-xDyxO (x = 0.01, 0.02) electrocatalysts exhibited impressive HER and OER performance respectively in 1 M KOH delivering a current density of 10 mAcm?2 at a potential of ?0.18 V vs RHE for HER and 1.53 V vs RHE for OER. Moreover, the Dy doped CuO electrocatalyst used as a bi-functional catalyst for overall water splitting achieved a potential of 1.56 V at a current density 10 mAcm?2 and relatively high current density of 66 mAcm?2 at a peak potential of 2 V. A long term stability of 24 h was achieved for a cell voltage of 2.2 V at a constant current density of 30 mAcm?2 with only 10% of the initial current loss. This showcases the accumulative opportunity of dysprosium as a dopant in CuO nanoparticles for fabricating a highly effective and low-cost bi-functional electrocatalyst for overall water splitting.  相似文献   

16.
Exploring high-performance and low-cost metal-free oxygen reduction reaction (ORR) catalysts from biomass-derived materials is vital to the development of novel energy conversion devices such as fuel cells, etc. Herein, nitrogen-enriched soybean milk derived carbon (BDC/rGO-HT-NH3) intercalated with reduced graphene oxide (rGO) electrocatalyst is prepared via one-pot hydrothermal synthesis method followed with nitridation by NH3. The resultant catalyst with high surface area, good conductivity and high content of N (9.4 at.%) shows high electrocatalytic activity towards ORR in alkaline medium, which mainly happens through the direct 4-electron pathway. The onset potential of BDC/rGO-HT-NH3 catalyzed ORR is 0.96 V vs RHE, which is only 0.11 V lower than that of the commercial Pt/C (20 wt%) catalyst. In addition, the BDC/rGO-HT-NH3 catalyst shows superior long-term running durability. The desirable catalytic performances enable the facile synthesis approach of BDC/rGO-HT-NH3 to be a promising methodology for transforming other biomass materials to N-enriched carbon based materials as low-cost and environmental friendly catalysts for ORR.  相似文献   

17.
The green production of hydrogen by electrochemical water splitting has been recently paid attention. It is more focused to research about the preparation of efficient electrocatalysts, which catalyze hydrogen evolution reaction (HER) in acidic media at low overpotential. Platinum is known as an ideal option, but its rarity and high-cost limit its application in practical industrial plants. Hence, minimizing the level of it can be a solution. It can be achieved by the decoration of platinum nanoparticles (PtNPs) on the different composites such as poly(3,4–ethylene dioxythiophene, PEDOT) and sulfonated graphene nanosheets (SG) in this work. Accordingly, the successful preparation and HER electrocatalytic manner of this nanocomposite were main objectives in the present report. The related characterization and performance were monitored using various analytical and electrochemical techniques. The low charge transfer resistance (around 50 Ω), low overpotential (?0.040 V vs. RHE), and stable manner (until 500 cycles) resulted in this HER electrocatalyst. It was controlled by Tafel reaction with electrochemical adsorption-desorption because of kinetic factors including Tafel slope (28.4 mV dec?1), charge-transfer coefficient of 2.0, and exchange current of 7.27 mA cm?2.  相似文献   

18.
TiO2 nanosheets with high ratio of {001} facets were coupled with reduced graphene oxide (rGO) nanosheets through the link of silver (Ag) nanoparticles, forming a novel ternary nanocomposite photocatalyst with a vertical heterostructure, TiO2-Ag-rGO. The vertical anchoring of TiO2-Ag nanosheets between rGO sheets was confirmed by transmission electron microscopy (TEM), Raman spectroscopy, energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). Due to excellent separation of electron-hole pairs in the TiO2 nanosheets, enhanced electron transfer to rGO via Ag nanoparticles, the TiO2-Ag-rGO nanocomposite exhibited an outstanding performance in photocatalytic hydrogen production, with a hydrogen production rate of 593.56 μmol g?1 h?1. This study provides new insights to the development of Pt-free photocatalysts for hydrogen production.  相似文献   

19.
A salt crystal-templating synthesis route is proposed to synthesize a Fe-N-C catalyst with well-controlled mesoporous structure. In the presence of glucose, NaCl-template can efficiently tune the porous structure of catalyst and help to improve the oxygen reduction reaction (ORR) activity. The optimized catalyst possesses a hierarchical mesopore size distribution, a high Brunauer-Emmett-Teller surface area (up to 911.56 m2 g?1) and homogeneous distribution of abundant active sites. As a result, the obtained catalyst shows a desirable ORR activity in alkaline medium (half-wave potential of 0.84 V and kinetic mass activity at 0.8 V of 24.95 A g?1), high selectivity (electron transfer number >3.92), excellent long term durability (only 16 mV negative shift of half-wave potential after 5000 potential cycles in O2-saturated 0.1 M KOH) and good tolerance to methanol. The enhanced electrochemical performance enables the proposed catalyst to be the promising electrocatalyst candidate to commercial Pt/C towards ORR.  相似文献   

20.
A three-dimensional (3D) reduced graphene oxideMn3O4 nanosheet (Mn3O4@rGO) hybrid was achieved by simple electrodeposition technique. Small palladium nanoparticle were homogeneously anchored onto Mn3O4@rGO substrate through the reduction of palladium salt. The interpenetrating network architecture of Mn3O4@rGO greatly inhibited the aggregation of 2D sheets of Mn3O4 and rGO, and the open 3D orientation of the Mn3O4@rGO hybrid nanosheets on the electrode facilitated both mass transport and electron transfer as well as maximally exposed active sites. The introduction of Mn3O4 enhanced the structural and electrochemical stability of rGO. The as-synthesized Pd/Mn3O4@rGO hybrid was employed as an electrocatalyst for electrocatalytic hydrogen evolution reaction (HER). The electrocatalyst showed a low overpotential of 20 mV at 10 mA cm?2, a small Tafel slope of 48.2 mV dec?1, and a large exchange current density of 0.59 mA cm?2. Importantly, the catalyst possessed superior durability with 85.87% of catalytic activity after a long-time test (10 h). This work presents a simple and efficient stratagy to construct high-performance electrocatalysts for energy and environmental applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号