首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Electrocatalytic water splitting is one of the most favorable methods for industrial-scale hydrogen production, but high cost and scarcity of commercially available noble metals restrict its application for hydrogen evolution reaction (HER). It is challenging to develop efficient non-noble metal-based electrocatalysts for HER. Herein, a Ni–Cr was doped on Copper foam (CF) substrate by adopting a simple annealing process. The high electrocatalytic efficiency for HER was achieved with Ni–Cr@CF electrode in strong basic medium with a lower overpotential of 144 mV to gain a current density of 10 mA cm−2 with a small Tafel slope of 88 mV dec−1. After surface modification, the CF substrate exhibits that the entire surface was uniformly covered with Ni–Cr species ensuring the fast reaction kinetics due to the efficient electron transfer process between the substrate and active catalyst. Moreover, the Ni–Cr@CF electrode exhibits excellent stability up to 2000 cycles under the strong basic medium.  相似文献   

3.
The development of cost-effective non-precious metal electrocatalysts is a major challenge for water splitting applications, but it is important for the realization of renewable energy systems. Alloying has proved an effective way to design metal-based electrocatalysts, and by controlling the annealing temperature, the surface morphology and crystallinity of the alloy can be tuned to control the hydrogen evolution reaction (HER) performance. In this work, with a simple coprecipitation method, we have prepared Co2FeAl alloys at different annealing temperatures (550 °C–670 °C), which exhibit excellent crystallinity and electrocatalytic performance for HER in alkaline solution. Among all conditions, the Co2FeAl alloys prepared at 620 °C shows the better crystallinity and the higher purity, and it could achieve a low overpotential of 149 mV at 10 mA cm?2 in alkaline solution. The overpotential demonstrates persistent stability with only 3 mV change after over 1000 cycles. Both density functional theory (DFT) calculations and experimental results revealed that alloying optimizes the electronic structure near the Fermi surface of the system, improving the electron transport efficiency and enhancing the catalytic activity. These Co2FeAl alloys are appealing candidates for high-performance alkaline HER electrocatalytic electrodes in water electrolysis due to their outstanding electrocatalytic properties.  相似文献   

4.
Hydrogen (H2) is one of the most important fuel candidates and its low-cost production would necessitate the development of efficient electrocatalysts. In this study, we report the synthesis and evaluation of two new carbazole-containing polymers as organic photoelectrochemical (PEC) catalysts for hydrogen evolution reaction (HER). The synthesis of these new conjugated polymers, poly(N-(2-ethylhexyl)-3,6-carbazole-p-bisdodecyloxy-phenylene vinylene) (P1) and poly(N-(2-ethylhexyl)-3,6-carbazole-p-bis(2-ethylhexyloxy)-phenylene vinylene) (P2), was accomplished by the Horner–Emmons polymerization reaction and subsequently characterized by 1H NMR, FTIR, diffuse reflectance UV–vis spectroscopy (DR UV–vis), scanning electron microscope (SEM) and thermogravimetric analysis (TGA). The optical band gaps of P1 and P2, derived from the onset absorption edge, were found to be 2.10 and 2.14 eV, respectively. The chronoamperometric (CA) measurements revealed that the photo-current density generated at ~0 V by P1 and P2, without the use of additional noble metal based cocatalysts or sacrificial electron donors, was ?1.8 and ?2.1 μA/cm2, respectively. The enhanced PEC performance of P2 was attributed due to its narrow band gap that enhanced light harvesting ability and the larger surface area which helped in minimizing charge recombination. The experimental observations were well supported by the drastic quenching of PL emission intensity of P2. The linear sweep voltammetry (LSV) measurements showed the onset potential at around ?0.3 V for both polymers. The photocurrent density difference for P2 at ?1.2 V reached to maximum value of 0.37 mA/cm2, amounting to ~25% current enhancement under illumination. Long-term stability testing via CA measurements revealed that P2 was relatively more stable than P1, which warranted its potential as photocatalyst for solar water splitting. In addition, P1 and P2 are readily soluble in common organic solvents which make them potential candidates for photovoltaic devices application.  相似文献   

5.
Transition metal phosphides represent a class of promising electrocatalysts for electrochemical water oxidization and other energy conversion reactions. In this work, we report a novel seal strategy, followed by a second step phosphorization treatment, produces Ni-Fe-P heterostructure directly grown on nickel foam that shows highly catalytic activity for electrochemical water oxidation. The as-prepared catalyst exhibits an excellent electrocatalytic activity, manifested by a current density of 20 mA cm−2 with a very low overpotential (260 mV) for oxygen evolution reaction along with an extremely small Tafel slope of 27 mV decade−1 and a very excellent durability of 120 h in alkaline solution. The excellent performance with exceptional durability owe much to the synergistic effect between the Ni-Fe-P heterostructure and the outer oxidized layer. Remarkably, a current density of 10 mA cm−2 was reached at a low cell voltage of 1.63 V when the original electrode and surface oxidized electrode are used as cathode and anode, respectively.  相似文献   

6.
Hydrogen evolution reaction in PTFE bonded Raney-Ni electrodes   总被引:1,自引:0,他引:1  
This study is concerned with the hydrogen evolution reaction (HER) in several PTFE bonded Raney-Ni electrodes as function of temperature and treatments. The Mo-doped Raney-Ni catalysts are activated by hours of long cathodic polarization interleaved with few deep “charge - discharge” (polarity reversal) cycles. Moreover, the HER efficiency of the electrode requires additives which enhance conductivity and surface properties: with powders of Ni alloys (Ni-Ti, Ni-Cr, Ni-Fe) the electrode becomes also more stable, and almost insensitive to polarity reversal. The main effect of a temperature increase is the reduction of the Tafel slope, which is about 120 mV/dec at 25 °C, and about 60 mV/dec at 60 °C. A proper choice of additives yield electrodes which withstand polarity reversal and may be used in electrolysers which are intermittently operated, or have anodes which require periodic in situ re-activation by reduction.  相似文献   

7.
Hydrogen due to high energy density and ecologically benign characteristics can become an excellent energy carrier for a sustainable energy economy and to appease the energy demand of humankind. Moreover, cost-effective and long-lasting photocatalysts can make the hydrogen generating process more economical and suitable. Recently, MXene have become one of the most sought-after composite materials for photocatalytic hydrogen generation. However, the photocstalytic performance can be further enhanced by doping with other semiconductor materials. Transition metal chalcogenides (Transition metals = Cu, Co, Ni, Zn, Cd, Mo, W)/MXene composites and mixed transition metal chalcogenide/MXene nanocomposites have been extensively investigated for the photocatalytic hydrogen generation. These materials possess unique two-dimensional layered structure that ameliorates the photocatalytic water splitting performance by increasing the light adsorption even at low photon flux density. The 2D design assists in reducing the distance necessary to transverse charge carriers to the surface. Because the layered structure tends to trap electrons in the ultrathin layers, 2D materials have unusual optoelectronic properties. In-plane covalent bonding assisted the creation of various heterojunctions and heterostructures in these 2D materials. Water splitting and hydrogen production are aided by the high surface area of these 2D materials. Due to its diverse elemental composition, unique 2D structure, good photoelectronic characteristics, large surface area, and many surface terminations. The design and production of many types of materials used as catalysts for the hydrogen evolution process are discussed in this article.  相似文献   

8.
In this study, an electrode of g-PTAP, a novel bifunctional catalyst for photoelectrochemical was fabricated and utilized for water splitting. The graphitic-poly (2,4,6-triaminopyrimidine (g-PTAP) was synthesized by the thermal vapor condensation polymerization (TVCP) method on FTO glass. The structure, morphology, and optical characteristics of the resultant g-PTAP were analyzed using analytical techniques such as FT-IR, Raman, XRD, XPS, CHNS, FE-SEM, EDS, and DRS. The synthesized g-PTAP was graphitic with sheet-like morphology and revealed maximum light absorbance capacity in the visible range. The DFT calculation showed an appropriate HOMO-LUMO band position for overall water splitting which was verified experimentally for H2 and O2 generation at photocathode and photoanode, respectively. Moreover, the g-PTAP sample exhibited good photo-stability as a photocathode as compared to a photoanode. This work can provide a pathway for fabricating highly efficient semiconductor photocatalyst for overall water splitting and solar energy such as conversion.  相似文献   

9.
Technology urges to replace the state-of-the-art catalysts such as platinum with low cost, earth abundant and durable electrocatalysts for efficient hydrogen evolution (HER) reaction which is going to become the major sustainable production of energy in future. Herein, we present the heterostructure based MoS2.ZnO (MZO) heterostructures for successful electrochemical water splitting process. For HER, the prepared MoS2.ZnO nanocomposites show the over potential as low as 239 mV at cathodic current density 10 mAcm−2 with an exchange current density of 3.2 μAcm−2. A Tafel slope of about 62 mV per decade suggested to have the Volmer-Heyrovsky mechanism for the HER process with MoS2.ZnO nanocomposite as the catalyst. The small Tafel slope indicates a promising electrocatalyst for HER in practical application. The strong interface formation at the MoS2.ZnO heterostructure facilitates higher catalytic activity and excellent cycling stability. The heterostructure formation based on semiconductor two dimensional (2D) transition metal dichalcogenides (TMDC) open up new avenues for effective manipulation of HER catalysts.  相似文献   

10.
Hydrogen is a carbon-free alternative energy source for use in future energy frameworks with the advantages of environment-friendliness and high energy density. Among the numerous hydrogen production techniques, sustainable and high purity of hydrogen can be achieved by water electrolysis. Therefore, developing electrocatalysts for water electrolysis is an emerging field with great importance to the scientific community. On one hand, precious metals are typically used to study the two-half cell reactions, i.e., hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). However, precious metals (i.e., Pt, Au, Ru, Ag, etc.) as electrocatalysts are expensive and with low availability, which inhibits their practical application. Non-precious metal-based electrocatalysts on the other hand are abundant with low-cost and eco-friendliness and exhibit high electrical conductivity and electrocatalytic performance equivalent to those for noble metals. Thus, these electrocatalysts can replace precious materials in the water electrolysis process. However, considerable research effort must be devoted to the development of these cost-effective and efficient non-precious electrocatalysts. In this review article, we provide key fundamental knowledge of water electrolysis, progress, and challenges of the development of most-studied electrocatalysts in the most desirable electrolytic solutions: alkaline water electrolysis (AWE), solid-oxide electrolysis (SOE), and proton exchange membrane electrolysis (PEME). Lastly, we discuss remaining grand challenges, prospect, and future work with key recommendations that must be done prior to the full commercialization of water electrolysis systems.  相似文献   

11.
This work mainly focuses on the hydrogen evolution reaction and oxygen evolution reaction of nanostructured molybdenum trioxide-based materials for energy catalysis. MoO3 is an n-type wide bandgap semiconductor and has the ability to replace noble metal catalysts. Here we summarize the crystal structure and properties of nanostructured MoO3. The work also highlights the recent advancement in electrocatalytic hydrogen evolution reaction, photocatalytic hydrogen evolution reaction, photoelectrochemical hydrogen evolution reaction, electrocatalytic oxygen evolution reaction, and photoelectrochemical oxygen evolution reaction in MoO3 based materials.  相似文献   

12.
Non-precious transition metal electrocatalysts with high catalytic performance and low cost enable the scalable and sustainable production of hydrogen energy through water splitting. In this work, based on the polymerization of CoMoO4 nanorods and pyrrole monomer, a heterointerface of carbon-wrapped and Co/Mo2C composites are obtained by thermal pyrolysis method. Co/Mo2C composites show considerable performance for both hydrogen and oxygen evolution in alkaline media. In alkaline media, Co/Mo2C composites show a small overpotential, low Tafel slope, and excellent stability for water splitting. Co/Mo2C exhibits a small overpotential of 157 mV for hydrogen evolution reaction and 366 mV for oxygen evolution reaction at current density of 10 mA cm−2, as well as a low Tafel slope of 109.2 mV dec−1 and 59.1 mV dec−1 for hydrogen evolution reaction and oxygen evolution reaction, respectively. Co/Mo2C composites also exhibit an excellent stability, retaining 94% and 93% of initial current value for hydrogen evolution reaction and oxygen evolution reaction after 45,000 s, respectively. Overall water splitting via two-electrode water indicates Co/Mo2C can hold 91% of its initial current after 40,000 s in 1 M KOH.  相似文献   

13.
In this study, cobalt disulfide (CoS2) nanostructures are synthesized using a simple hydrothermal method. The effects of experimental parameters including cobalt precursor, reaction times, and reaction temperatures are investigated on the structure, morphology and electrocatalytic properties of CoS2 for hydrogen evolution reaction (HER). The characterization of as-prepared catalysts is performed using X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), and X-ray photoelectron spectroscopy (XPS). The HER efficiency of the catalysts is examined using linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) methods in 0.5 M H2SO4 solution. Furthermore, chronoamperometry (CA) is used for stability evaluation. The catalyst obtained from cobalt acetate precursor, within 24 h at 200 °C exhibits superior electrocatalytic activity with a low onset potential (139.3 mV), low overpotential (197.3 mV) at 10 mA. cm?2 and a small Tafel slope of 29.9 mV dec?1. This study is a step toward understanding the effect of experimental parameters of the hydrothermal method on HER performance and developing optimal design approaches for the synthesis of CoS2 as a common electrocatalyst.  相似文献   

14.
Three-dimensional (3D) graphene was easily obtained by a simple hydrothermal method from two-dimensional (2D) graphene to create the interspace sites and active surface area. So, the fabrication of the 3D-graphene nanocomposite is promising for advanced energy production and storage application. The structure of the 3D-graphene nanocomposite was characterized by various techniques. Then, 3D-graphene was decorated with Pd nanoparticles. Morphological characterization shows the porous structure of 3D-Pd/rGO, so it has a high electroactive surface area. The function of the electrocatalyst toward the supercapacitor, hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) were investigated. The obtained results as a supercapacitor displayed that the supercapacitor on 3D-Pd/rGO has a high specific capacitance of 582.0 F g?1, the high energy density of 180 (W h Kg?1), high power density of 3750 (W Kg?1), long potential window of 1.00 V and long life. The electrocatalyst shows the small onset potential of ?0.08 V (vs. RHE), Tafel slope of 29 mV dec?1 and high durability. Also, in the electroanalytical application of the nanocompound as an electrocatalyst for ORR shows an excellent onset potential of 0.90 V (vs. RHE), slow drop in the current density (34% in the presence of MeOH) and the reduction process via a four electrons pathway.  相似文献   

15.
Molybdenum sulfide (MoSx) has recently emerged as a promising catalyst for the hydrogen evolution reaction (HER) in water splitting that may replace the noble metal, such as platinum, as a cost-effective and high catalytic materials. It has been reported that two-dimensional structured MoSx exhibit significant amount of exposed S-edge, which can be an active electrocatalytic catalyst for hydrogen production. However, the current reports mainly focusing on the planar electrode, where the catalyst utilization and the number of active sites are limited due to the lower exposed specific surface area (SSA) of supporting electrodes. In this work, we utilize the freeze-drying method to produce a porous three-dimensional (3D) structure assembled by graphene flakes. The as-prepared 3D graphene scaffold shows high surface area, high porosity while low density, which makes it as an ideal conductive electrode for supporting of MoSx catalysts. Moreover, it was found out that the crystallinity of MoSx, controlled by thermolysis temperature of thiosalts precursor ((NH4)2MoS4), shows significantly influence the performance of HER. The optimized annealing temperature for the designed hybrid electrodes (MoSx/3D-graphene) was found to create a lot of active sites, which facilitate the electrocatalytic performance for water splitting (overpotential of 163 mV @10 mA/cm2 and a Tafel slope of 41 mV/dec). The study provides a potential material, which could pave the way for future applications of hydrogen energy.  相似文献   

16.
Designing and synthesizing of efficient and inexpensive bifunctional electrocatalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is one of the current research topics. In this study, NiFeCMo film in nickel mesh substrate is prepared by one-step direct-current electrodeposition method. The obtained NiFeCMo film shows the excellent electrocatalytic activity, which only requires overpotentials of 254 mV for HER and 256 mV for OER to drive current density of 10 mA cm−2, with corresponding Tafel slopes of 163.9 and 60.3 mV·dec−1 in 30% KOH medium, respectively. Moreover, NiFeCMo film only needs a low cell voltage of 1.61 V to drive current density of 10 mA cm−2 in an alkaline electrolyzer. Such remarkably HER and OER properties of NiFeCMo alloy is attributed to the increased effective electrochemically active surface area and the synergy effect among Ni, Fe, C and Mo.  相似文献   

17.
Hydrogen is regarded as a clean and highly efficient renewable energy. The platinum catalytic electrode is widely used in hydrogen evolution reaction (HER), but it has affected its commercial application because of its high cost. Therefore, the study on cost-effective and high-active catalysts toward HER is required to realise large-scale hydrogen production. In this work, we present a novel Pt/NPSSF catalyst prepared by a one-step in-situ deposition of Pt precursor on a nano-porous stainless-steel film (NPSSF) substrate. The prepared catalyst was evaluated in acidic and alkaline conditions for its HER activities. The preliminary results demonstrate that the Pt/NPSSF electrodes have superior catalytic activity for HER. The hydrogen overpotential of Pt/NPSSF is ?70mV (RHE) in the alkaline solution, which is lower than the Pt electrode of ?184mV. At the same time, we also obtained ?71.2 mV of overpotential for the Pt/NPSSF electrode, which is similar to the ?73mV of Pt electrode in the acid solution. The Tafel graphs plotted from the LSV curves indicate the different HER mechanism in the alkaline and acid solution. The HER kinetics of the Pt/NPSSF were studied using EIS. Comparing Pt/NPSSF to Pt electrode, the multi-pore structures of NPSSF and the Pt nanoparticles active sites decrease the charge transfer-resistance for the HER process. The facile preparation, high efficiency and low value of the Pt/NPSSF composite electrodes demonstrate the promising applications in HER.  相似文献   

18.
The excessive exhaustion of conventional fossil fuels and increasingly severe environmental issues prompt us to grope for high-performance and cost-effective catalysts for hydrogen evolution reaction (HER) by electrocatalytic water splitting. In this work, nanocoral-like NiSe2 catalysts modified with CeO2 have been successfully prepared through one-pot hydrothermal route and utilized to electrocatalytic HER in alkaline solution. It turns out that nanocoral-like NiSe2 (labeled as CNS-2) catalyst delivers current densities of 10 and 50 mA cm−2 at overpotentials of only 130 and 242 mV, respectively. Additionally, CNS-2 takes on a small Tafel slope of 115 mV dec−1 and low charge transfer resistance, revealing a quicker Faradaic process and more favorable HER kinetics. Furthermore, it displays considerable long-term stability during the constant hydrogen producing. The strategy of fabricating NiSe2 modified with CeO2 unfolds a novel angle of view for exploiting highly efficient and durable catalysts for electrocatalytic HER.  相似文献   

19.
Reasonable design of efficient and stable catalysts with low cost and abundant natural reserves is vital for electrocatalytic water splitting. Herein, novel nanotremella-like Bi2S3/MoS2 composites with different mass ratios between Bi2S3 and MoS2 have been successfully prepared through a hydrothermal approach and further applied to hydrogen evolution reaction (HER) in 1.0 M KOH electrolyte for the first time. When the mass ratio of Bi2S3 and MoS2 is 5:5, as-prepared nanotremella-like Bi2S3/MoS2 (marked as BMS-5) manifests favorable HER catalytic activity with overpotential of 124 mV at current density of 10 mA cm−2 and relatively low Tafel slope of 123 mV dec−1. Moreover, it exhibits an extraordinary durability for uninterrupted hydrogen generation. The enhanced HER performances are ascribed to the synergistic effects between Bi2S3 and MoS2, giving rise to large electrocatalytic active area and fast HER kinetics. The results pave a new path to design and construct excellent Bi2S3/MoS2 nanomaterials for electrocatalytic hydrogen generation.  相似文献   

20.
The hydrogen due to its high mass energy density is a new renewable, economically viable and clean resource. The most eco-friendly and economical approaches for the generation of hydrogen through hydrogen evolution is electrochemical water splitting. The two-dimensional (2D) nanomaterials have been recently found as potential candidates as non-noble metal catalyst for hydrogen evolution. In this work, we have systematically studied the structural and electronic properties of the newly predicted hexagonal-aluminium carbide monolayer (h-AlC ML) under the framework of dispersion-corrected density functional theory (DFT) calculations. The calculated electronic total density of states (TDOS) of h-AlC ML predict its metallic nature in contrast to other polar honeycomb 2D materials which are either semiconducting or semimetallic. The metallic behavior of h-AlC monolayer which motivates us to investigate its HER activity results due to the presence of delocalized charge density near Fermi level. Thus, we have investigated the HER activity of h-AlC ML by calculating hydrogen (H) adsorption energy (ΔEH) and Gibbs free energy (ΔGH) at three different sites of the 3 × 3 and 4 × 4 supercells of h-AlC ML; top of carbon atom (EH-C), top of aluminium atom (EH-Al) and hollow site (EH-Hollow). Our results show that the hollow site is most catalytically active site in both supercells of h-AlC ML. We believe that our results will inspire experimentalists to fabricate this new 2D material for achieving the desired range of HER activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号