首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents three main contributions: (i) an experimental analysis of variables, using well-defined statistical patterns applied to the main parameters of the welding process. (ii) An on-line/off-line learning and testing method, showing that robots can acquire a useful knowledge base without human intervention to learn and reproduce bead geometries. And finally, (iii) an on-line testing analysis including penetration of the bead, that is used to train an artificial neural network (ANN). For the experiments, an optic camera was used in order to measure bead geometry (width and height). Also real-time computer vision algorithms were implemented to extract training patterns. The proposal was carried out using an industrial KUKA robot and a GMAW type machine inside a manufacturing cell. We present expermental analysis that show different issues and solutions to build an industrial adaptive system for the robotics welding process.  相似文献   

2.
Pulsed gas metal arc welding is one of the most widely used processes in the industry. It offers spray metal transfer at low average currents, high metal deposition rate, versatility, less distortion, and the ability to be used in automated robotic welding systems. The weld bead plays an important role in determining the mechanical properties of the weld. Its geometric parameters, viz., width, reinforcement height, and penetration, are decided according to the welding process parameters, such as wire feed rate, welding speed, pulse current magnitude, frequency (cycle time), etc. Therefore, to produce good weld bead geometry, it is important to set the proper welding process parameters. In the present paper, mathematical models that correlate welding process parameters to weld bead geometry are developed with experimental investigation. Taguchi methods are applied to plan the experiments. Five process parameters, viz., wire feed rate, plate thickness, pulse frequency, pulse current magnitude, and travel speed, are selected to develop the models using multiple regression analysis. The models developed were checked for their adequacy. Results of confirmation experiments show that the models can predict the bead geometry with reasonable accuracy.  相似文献   

3.
教学型弧焊机器人设计   总被引:1,自引:0,他引:1  
叙述教学型弧焊机器人设计的总体方案,以及其结构和控制系统的设计。采用SolidWorks绘图,设计了教学型弧焊机器人的结构,实现了三维运动仿真。采用微机控制技术,设计了教学型弧焊机器人控制系统。实现了对教学型弧焊机器人的控制,并把位置信息反馈给操作者实现人机交互的功能。  相似文献   

4.
Automatic welding technology is a solution to increase welding productivity and improve welding quality, especially in thick plate welding. In order to obtain high-quality multi-pass welds, it is necessary to maintain a stable welding bead in each pass. In the multi-pass welding, it is difficult to obtain a stable weld bead by using a traditional teaching and playback arc welding robot. To overcome these traditional limitations, an automatic welding tracking system of arc welding robot is proposed for multi-pass welding. The developed system includes an image acquisition module, an image processing module, a tracking control unit, and their software interfaces. The vision sensor, which includes a CCD camera, is mounted on the welding torch. In order to minimize the inevitable misalignment between the center line of welding seam and the welding torch for each welding pass, a robust algorithm of welding image processing is proposed, which was proved to be suitable for the root pass, filling passes, and the cap passes. In order to accurately track the welding seam, a Fuzzy-P controller is designed to control the arc welding robot to adjust the torch. The Microsoft Visual C++6.0 software is used to develop the application programs and user interface. The welding experiments are carried out to verify the validity of the multi-pass welding tracking system.  相似文献   

5.
In the automatic pipeline welding systems, the mechanical properties and weld bead geometry are changed following to angle variation around the pipe. It occurred since during a weld pass, there are all of possible positions. In this work, first an augmented state-space model of process is presented that includes the travel motion and angle of robot. Also, gravitational force and arc voltage equations are modified. This model covers the free flight transfer modes (spray and globular). Then, accuracy of model is shown by model validation and comparing to real experiments. Finally, the angle effect on detachment is studied for all positions using simulation results. Detachment frequency variations, disturbance effects, and irregularity in detachments are analyzed using time–frequency representation.  相似文献   

6.
In this paper, determination of the welding process parameters for obtaining an optimal weld bead geometry in gas tungsten arc welding is presented. The Taguchi method is used to formulate the experimental layout, to analyse the effect of each welding process parameter on the weld bead geometry, and to predict the optimal setting for each welding process parameter. Experimental results are presented to explain the proposed approach.  相似文献   

7.
Gas metal arc (GMA) welding is extensively employed in the metal industries for a variety of ferrous and non-ferrous metals because of its potential for increasing the productivity and quality of welding which is controlled by the process parameters. The objective of this paper is to develop an algorithm that enables the determination of process variables for optimised bead geometry for robotic GMA welding. It depends on the inversion of empirical Eq. derived from multiple regression analysis of the relationships between the process variables and the bead dimensions using the least-squares method. The method determines directly those variables which will give the desired set of bead geometry. This avoids the need to iterate by a succession of guesses which are employed in the finite element method (FEM). These results suggest that process variables from experimental equations for robotic GMA welding may be employed to monitor and control the bead geometry in real-time.  相似文献   

8.
为了提升工业机器人的自动化水平,设计人员尝试基于机器视觉系统对工业机器人系统进行优化,并对相机与工业机器人视觉系统进行标定,并以蚁群算法为基础,搭建工业机器人去毛刺平台。通过引入工业视觉系统,实现对于目标工件的在线监测,并将有关工件轮廓以及位置的信息,远程传输至工业机器人去毛刺平台,提升该平台智能化水平,有效解决零件生产加工过程中,异形工件毛刺难以去除的问题。  相似文献   

9.
基于遗传模拟退火算法的弧焊机器人系统协调路径规划   总被引:1,自引:0,他引:1  
深入地研究了弧焊机器人系统的协调路径规划。从全局的角度用5元组序列描述了焊接路径。设计了评价 焊接路径目标函数:焊接位置函数、焊缝成形质量函数、关节位置函数和运动平稳性函数。以线性加权法为求解 多目标规划的基本思想,把遗传模拟退火算法用于弧焊机器人与变位机协调路径规划,取得了很好的效果。协调 路径规划精确地保证焊缝的最佳焊接位置与最佳的焊枪姿态,并能找到柔顺的焊接路径,提高了机器人焊接的质 量和效率。  相似文献   

10.
Taguchi philosophy has been applied for obtaining optimal parametric combinations to achieve desired weld bead geometry and dimensions related to the heat-affected zone (HAZ), such as HAZ width in the present case, in submerged arc welding. The philosophy and methodology proposed by Dr. Genichi Taguchi can be used for continuous improvement in products that are produced by submerged arc welding. This approach highlights the causes of poor quality, which can be eliminated by self-adjustment among the values of the process variables if they tend to change during the process. Depending on functional requirements of the welded joint, an acceptable weldment should confirm maximum penetration, minimum reinforcement, minimum bead width, minimum HAZ width, minimum bead volume, etc. to suit its area of application. Hence, there exists an increasing demand to evaluate an optimal parameter setting that would fetch the desired yield. This could be achieved by optimization of welding variables. Based on Taguchi’s approach, the present study has been aimed at integrating statistical techniques into the engineering process. Taguchi’s L9 (3**3) orthogonal array design has been adopted and experiments have been accordingly conducted with three different levels of conventional process parameters using welding current and flux basicity index to obtain bead-on-plate weld on mild steel plates. Features of bead geometry and HAZ in terms of bead width, reinforcement, depth of penetration and HAZ width have been measured for each experimental run. The slag, generated during welding, has been consumed in further runs by mixing it with fresh unmelted flux. The percentage of slag in the mixture of fused flux (slag) and fresh flux has been defined as slag-mix%. Welding has been performed by using varying slag-mix%, treated as another process variable, in order to obtain the optimum amount of slag-mix that can be used without any alarming adverse effect on features of bead geometry and HAZ. This would lead to ‘waste to wealth’.  相似文献   

11.
In the present work, application of the Taguchi method in combination with grey relational analysis has been applied for solving multiple criteria (objective) optimization problem in submerged arc welding (SAW). A grey relational grade evaluated with grey relational analysis has been adopted to reveal an optimal parameter combination in order to obtain acceptable features of weld quality characteristics in submerged arc bead-on-plate welding. The idea of slag utilization, in subsequent runs, after mixing it with fresh unmelted flux, has been introduced. The parentage of slag in the mixture of fresh flux and fused flux (slag) has been denoted as slag-mix%. Apart from two conventional process parameters: welding current and flux basicity index, the study aimed at using varying percentages of slag-mix, treated as another process variable, to show the extent of acceptability of using slag-mix in conventional SAW processes, without sacrificing any characteristic features of weld bead geometry and HAZ, within the experimental domain. The quality characteristics associated with bead geometry and HAZ were bead width, reinforcement, depth of penetration and HAZ width. Using grey relational grade as performance index, we have performed parametric optimization yielding the desired features of bead geometry and HAZ. Predicted results have been verified with confirmatory experiments, showing good agreement. This proves the utility of the proposed method for quality improvement in SAW process and provides the maximum (optimum) amount of slag-mix that can be consumed in the SAW process without any negative effect on characteristic features of the quality of the weldment in terms of bead geometry.  相似文献   

12.
This paper aims to use a novel optimization algorithm called imperialist competitive algorithm (ICA) in order to optimize the weld bead geometry in the gas tungsten arc welding process. This algorithm offers some advantages such as simplicity, accuracy, and time saving. Experiments were conducted in order to collect welding data and obtain a relationship for the bead geometry as a function of welding current, arc voltage, welding speed, and arc length. Furthermore, a regression equation for depth of penetration and bead width was obtained using the least squares method, and the equations were optimized using ICA. Ultimately, the value of the input variables to obtain minimum bead width and maximum depth of penetration was calculated using ICA. Computational results indicate that the proposed algorithm is quite effective and powerful in optimizing the cost function.  相似文献   

13.
Some dynamic factors, such as inertial forces and friction, may affect the robot trajectory accuracy. But these effects are not taken into account in robot motion control schemes. Dynamic control methods, on the other hand, require the dynamic model of robot and the implementation of new type controller. A method to improve robot trajectory accuracy by dynamic compensation in robot motion control system is proposed. The dynamic compensation is applied as an additional velocity feedforward and a multilayer neural network is employed to realize the robot inverse dynamics. The complicated dynamic parameter identification problem becomes a learning process of neural network connecting weights under supervision. The finite Fourier series is used to activate each actuator of robot joints for obtaining training samples. Robot control system, consisting of an industrial computer and a digital motion controller, is implemented. The system is of open architecture with velocity feedforward function. The proposed m  相似文献   

14.
Quality has now become an important issue in today’s manufacturing world. Whenever a product is capable of conforming to desirable characteristics that suit its area of application, it is termed as high quality. Therefore, every manufacturing process has to be designed in such a way that the outcome would result in a high quality product. The selection of the manufacturing conditions to yield the highest desirability can be determined through process optimization. Therefore, there exists an increasing need to search for the optimal conditions that would fetch the desired yield. In the present work, we aim to evaluate an optimal parameter combination to obtain acceptable quality characteristics of bead geometry in submerged arc bead-on-plate weldment on mild steel plates. The SAW process has been designed to consume fused flux/slag, in the mixture of fresh flux. Thus, the work tries to utilize the concept of ‘waste to wealth’. Apart from process optimization, the work has been initiated to develop mathematical models to show different bead geometry parameters, as a function of process variables. Hence, optimization has been performed to determine the maximum amount of slag--flux mixture that can be used without sacrificing any negative effect on bead geometry, compared to the conventional SAW process, which consumes fresh flux only. Experiments have been conducted using welding current, slag-mix percentage and flux basicity index as process parameters, varied at four different levels. Using four3 full factorial designs, without replication, we have carried out welding on mild steel plates to obtain bead-on-plate welds. After measuring bead width, depth of penetration and reinforcement; based on simple assumptions on the shape of bead geometry, we calculated other relevant bead geometry parameters: percentage dilution, weld penetration shape factor, weld reinforcement form factor, area of penetration, area of reinforcement and total bead cross sectional area. All these data have been utilized to develop mathematical models between predictors and responses. Response surface methodology (RSM), followed by the multiple linear regression method, has been applied to develop these models. The effects of selected process parameters on different responses have been represented graphically. Finally grey relational analysis coupled with the Taguchi method (with Taguchi’s orthogonal array) has been applied for parametric optimization of this welding technique. Confirmatory experiments have been conducted to verify optimal results.  相似文献   

15.
为实现大型结构件焊后焊缝自动磨抛,磨抛机器人除了具备移动能力和磨抛能力外,更需要在复杂和不规则的工业环境中对焊缝进行准确的跟踪和测量,进而为焊缝磨抛提供有效的加工参数。将两个电荷耦合器件(Charge-coupled device, CCD) 相机和激光器搭载在吸附移动机器人本体上,构成焊缝磨抛机器人视觉系统。根据结构光的亮度分布特征,提出定位图像感兴趣区域(Region of interest, ROI)的算法,减小了计算量,提高了计算效率;提出在噪声干扰条件下快速检测结构光特征线的列高斯差分算法,成功提取结构光特征线;提出差分最值粗定位-距离阈值精定位的焊缝边缘点检测算法,快速、精确提取焊后焊缝的边缘点,计算出焊后焊缝的几何信息。图像处理试验及相应的焊缝磨抛试验结果表明:该视觉系统稳定、可靠,视觉算法快速、精确并且具有很好的鲁棒性,为复杂工业环境下大型结构件焊缝磨抛自动化奠定了基础。  相似文献   

16.
Weld cladding is a process of depositing a thick layer of a corrosion resistance material over carbon steel plate to improve the corrosion resistance properties. The main problem faced in stainless steel cladding is the selection of process parameters for achieving the required clad bead geometry and its shape relationships. This paper highlights an experimental study carried out to develop mathematical models to predict clad bead geometry and its shape relationships of austenitic stainless steel claddings deposited by gas metal arc welding process. The experiments were conducted based on four-factor, five-level central composite rotatable design with full replication technique. The mathematical models were developed using multiple regression method. The developed models have been checked for their adequacy and significance. The direct and interaction effects of process parameters on clad bead geometry and its shape relationships are presented in graphical form.  相似文献   

17.
In fiber laser beam welding (LBW), the selection of optimal processing parameters is challenging and plays a key role in improving the bead geometry and welding quality. This study proposes a multi-objective optimization framework by combining an ensemble of metamodels (EMs) with the multi-objective artificial bee colony algorithm (MOABC) to identify the optimal welding parameters. An inverse proportional weighting method that considers the leave-one-out prediction error is presented to construct EM, which incorporates the competitive strengths of three metamodels. EM constructs the correlation between processing parameters (laser power, welding speed, and distance defocus) and bead geometries (bead width, depth of penetration, neck width, and neck depth) with average errors of 10.95%, 7.04%, 7.63%, and 8.62%, respectively. On the basis of EM, MOABC is employed to approximate the Pareto front, and verification experiments show that the relative errors are less than 14.67%. Furthermore, the main effect and the interaction effect of processing parameters on bead geometries are studied. Results demonstrate that the proposed EM-MOABC is effective in guiding actual fiber LBW applications.  相似文献   

18.
Optimization of pulsed gas tungsten arc welding (pulsed GTAW) process parameters was carried out to obtain optimum weld bead geometry with full penetration in welding of stainless steel (304L) sheets of 3 mm thickness. Autogenuous welding with square butt joint was employed. Design of experiments based on central composite rotatable design was employed for the development of a mathematical model correlating the important controllable pulsed GTAW process parameters like pulse current (I p), pulse current duration (T p), and welding speed (S) with weld bead parameters such as penetration, bead width (W), aspect ratio (AR), and weld bead area of the weld. The developed models were checked for adequacy based on ANOVA analysis and accuracy of prediction by conducting a confirmation test. Weld bead parameters predicted by the models were found to confirm observed values with high accuracy. Using these models, the main and interaction effects of pulsed GTAW process parameters on weld bead parameters were studied and discussed. Optimization of pulsed GTAW process parameters was carried out to obtain optimum bead geometry using the developed models. A quasi-Newton numerical optimization technique was used to solve the optimization problem and the results of the optimization are presented.  相似文献   

19.
This paper describes an investigation on the micro-structure, weld bead geometry, dilution rate and mechanical properties of the butt and overlap weld joints of 1-mm-thick 6082 aluminium alloy sheet. Weld joints were produced with the help of a variant of gas metal arc welding (GMAW) process, i.e. direct current-pulsed GMAW (DC P-GMAW), using a Vario wire. The capability of the new process has been assessed in terms of dilution, weld bead geometry, mechanical properties and porosity. The welding results with this new process showed good process stability in the welding of thin sheets of aluminium, while weld mismatch was found to increase with an increase in heat input. Weld bead geometry parameters such as weld size, throat and weld convexity increases with the increase in heat input. The dilution in case of lap joints (10–25%) was less than that of butt joints (60–80%). The increase in factor Φ (summarizing the effect of pulse parameters) increases the form factor and lowers the toe angle. Mechanical properties of the welds are poor as the tensile strength of 6082 alloy welds was around 150 MPa, and the percent elongation was about 1.3%, and it was primarily due to high porosity. Porosity (%) in weld joints was found in the range of 0.33–11.59%. The porosity is a major issue with DC P-GMAW welds.  相似文献   

20.
Gas metal arc (GMA) welding process has widely been employed due to the wide range of applications, cheap consumables, and easy handling. In order to achieve a high level of welding performance and quality, a suitable model is required to investigate the characteristics of the effects of process parameters on the bead geometry in the GMA welding process. This paper is to represent new algorithms to predict process parameters on top-bead width in robotic GMA welding process. The models have been developed, linear, curvilinear, and intelligent model, based on full factorial design with two replications. Regression analysis was employed for optimization of the coefficients of linear and curvilinear models, while genetic algorithm (GA) was utilized to estimate the coefficients of an intelligent model. Not only the fitting of these models was checked and compared by using a variance test (analysis of variance (ANOVA)) but also the prediction on top-bead width using the developed models was carried out based on the additional experiments. The developed models were employed to investigate the characteristic between process parameters and top-bead width. Resulting solutions and graphical representation showed that the intelligent model developed can be employed for prediction of bead geometry in GMA welding process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号