首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantifying Management of Irrigation and Drainage Systems   总被引:1,自引:0,他引:1  
To evaluate the performance of irrigation systems, different indicators have been used by researchers. In this study some of the water management problems of three different irrigation systems in Iran are presented. In addition, the water delivery performance of the Doroodzan Irrigation and Drainage Network in southern Iran is evaluated in detail. The analyses included wet and dry seasons and were based on the indicators of overall project water delivery efficiency (ep) and the monthly water requirement of crops. The distribution and conveyance of water in the Doroodzan Irrigation Network was unreliable in both seasons. With an overall project efficiency of around 46%, about 20% of the total delivered water was distributed unreliably. Water distribution equity along tertiaries was also found to be poor. A contributing factor could be the poor operation and maintenance of gates.  相似文献   

2.
The effect of four different irrigation levels on the marketable yield and economic return of summer-growth lettuce was evaluated during 2005 and 2006 in Eastern Sicily, Italy. The viability of deficit irrigation was evaluated by estimating optimum applied water levels. Actual evapotranspiration (ETa) was estimated by combining pan evaporation measures and the Penman–Monteith approach (ET0-PM). The highest marketable yield of lettuce was recorded for plots receiving 100% ET0-PM. For deficit irrigated plots, reductions in crop production were ascribed to a decrease in lettuce weight. Crop coefficients equal to 1 determined maximum crop production values. Crop water use efficiency was maximum at a 100% ET0-PM level of water applied, corresponding to yield of 0.3?t?ha?1?mm?1. Irrigation water use efficiency reached its maximum at a 40% ET0-PM level, with values of 0.54 and 0.44?t?ha?1?mm?1 during 2005 and 2006, respectively. Water applied and marketable yield of lettuce showed a significant quadratic relationship. Cost functions had a quadratic form during 2005 and a linear form during 2006. In the land-limiting condition the optimal economic levels fit the agronomic ones well. In the water-limiting condition, ranges of water deficit of 15–44% and 74–94% were as profitable as full irrigation, thus contributing to appreciable water savings.  相似文献   

3.
Efficient on-farm use of water and labor for all methods requires a water supply flexible in frequency, rate, and duration and under the control of the irrigator at the point of application. For surface irrigation, the use of large capacity systems for supply and distribution are essential and economical, especially when considering the reduced labor needs, increased irrigation efficiency, and reduced potential high water table problems resulting from having a large, flexible supply associated with a flexible arranged-demand schedule. Automation and stability of flow at the farm turnout, comparable to a domestic system with variable flow delivery conditions, are typically accomplished by use of large capacity semiclosed pipeline systems. A cost comparison of capital investment for various sized, flexible supply systems with resulting farm water and labor costs is presented which shows the great value from the upgraded management made possible.  相似文献   

4.
As a second crop, watermelons (Citrullus vulgaris, Crimson sweet) were grown in 2003 and 2004 in the Sanliurfa-Harran Plain in southeastern Turkey to determine the effect of preharvest water stress on fruit yield, quality (i.e., soluble solids contents and fruit size), leaf temperature, and some other physiological parameters. Preharvest drip irrigation treatments included (1) complete irrigation cutoff, dry (D); (2) full irrigation based on replenishment of soil water depleted from 0 to 90?cm soil profile (C); (3) 75% full irrigation (IR1); (4) 50% full irrigation (IR2); and (5) 25% full irrigation (IR3) with 3-day irrigation interval. Treatment plots received the same level of irrigation water until the fruit formation stage, except for Treatment D. Then, different water stress levels were imposed on treatment plots. Irrigation water applied to the five respective treatments were 636, 511, 395, 245, and 120?mm in 2003 and 648, 516, 403, 252, and 127?mm in 2004. Results indicated that fruit yield was significantly lowered by reduced water rates. The seasonal average yield response factor (ky) for both years was 1.0, but it was 0.97 for 2003 and 0.98 for 2004. The highest marketable fruit yield, obtained from treatment C, was 32.4?Mg?ha?1 in 2003 and 37.1?Mg?ha?1 in 2004. D, IR2, and IR3 treatments reduced most measured parameters, except for soluble solids contents (SSC). Both the fruit size and SSC were significantly affected by late-season irrigation management; individual fruit weights were significantly reduced, whereas SSC increased in the IR2 and IR3 treatments compared to the control values. The writers’ results clearly indicated that reduced preharvest irrigation was detrimental. Water use efficiency (WUE) was significantly affected by irrigation treatments. Even a 25% reduction in the irrigation amount caused a 15% reduction in marketable yield. This indicates that deficit irrigation in the ripening stage significantly increased water use efficiency. The study demonstrated that a moderate deficit irrigation, which is replenishment up to 50% of soil water depleted in the root zone, can be successfully used to improve WUE under semiarid climatic conditions.  相似文献   

5.
Vegetable production areas are intensively managed with high inputs of fertilizer and irrigation. The objectives of this study were to evaluate the interaction between N-fertilizer rates and irrigation scheduling using soil moisture sensor irrigation controllers (SMS) on yield, irrigation water use efficiency (IWUE) of bell pepper cultivated under plastic mulch and drip irrigation. Treatments included three irrigation scheduling and three N-rates (176, 220, and 330 kg/ha). Irrigation treatments were: SS10, water application controlled by SMS-based irrigation set at 10% volumetric water content (VWC) which was allotted five irrigation windows daily and bypassed events if the soil VWC exceeded the established threshold; SS12, threshold set at 12% VWC; and TIME, control with irrigation being applied once a day similar to grower irrigation management. Marketable yields ranged between 16 and 29 Mg/ha. The SMS treatments reduced the applied irrigation in 7 to 62% compared to TIME treatment without reducing yield. The treatments SS10 and SS12 reduced nitrate leaching by 25 to 73% compared to TIME treatment.  相似文献   

6.
Level basins, when properly designed and managed, often attain very high irrigation efficiencies. Problems can arise when the infiltrated depth exceeds the soil water holding capacity or when the crops are sensitive to waterlogging. Both cases could benefit from allowing part of the applied water to run off the basin. This water can be reused for on-farm irrigation of the subsequent basin. Such a setup will be referred to as the “runoff rescue” (RR) system. In this work, an RR system composed of five adjacent terraced basins is described and evaluated. The basins were connected by outflow points located at the upstream and downstream ends of the fields. To provide terms for comparison, the performance resulting from conventional irrigation (without RR) of each basin was estimated using a simulation model. The RR system showed reductions of 14, 16, and 24% in irrigation time, infiltrated depth, and recession time, respectively. The average increments for distribution uniformity and application efficiency were 2 and 9%, respectively.  相似文献   

7.
The hydrant pressure head in an on-demand water distribution system can be subject to high fluctuation depending on the discharge flowing inside the pipes, with consequent impacts on the performance of on-farm irrigation systems. In this work, an Italian water distribution system was analyzed using the AKLA model at upstream discharges of 1,200 and 600?L?s?1 to estimate the range of hydrant pressure variation. A computer model was developed, calibrated, and used to evaluate the performance of a drip irrigation system by relating the on-farm network with the hydrant characteristic curve at a certain operating status. The flow regulator within the hydrant played an important role in stabilizing the performance of the network at hydrant pressures higher than 27 m. At lower hydrant pressures, to apply the same amount of water, irrigation time must be extended by 17 and 95% for pressure heads of 20 and 12 m, respectively. These approaches described have great utility to ensure adequate irrigation management when water is delivered by pressurized on-demand systems.  相似文献   

8.
Flexible Irrigation Systems: Concept, Design, and Application   总被引:2,自引:0,他引:2  
This paper presents the need, value, and concept of flexible irrigation water supply systems that can deliver water with flexibility in frequency, rate, and duration under the control of the farmer at the point of application using a limited rate arranged-demand or other schedule. It introduces the needed terminology including “congestion”—how much reserve time and capacity is required to assure water delivery at the frequency and rate desired. An illustrative design procedure for the necessary pipeline and reservoir capacities is illustrated. The techniques discussed emphasize the conversion of the economical steady supply canal flows to flexible on-farm usage through the use of service area reservoirs located between the secondary and tertiary systems, and of semiclosed pipelines and/or level-top canals as automated distribution systems which facilitates the farmers’ need for daytime only variable on-farm deliveries to permit optimization of on-farm water management. This improved management is the ultimate source of increased food production after improved crop, land, and water resources have reached their maximum. The coordinated use of return flow systems is described.  相似文献   

9.
This paper presents the area and water allocation model (AWAM), which incorporates deficit irrigation for optimizing the use of water for irrigation. This model was developed for surface irrigation schemes in semiarid regions under rotational water supply. It allocates the land area and water optimally to the different crops grown in different types of soils up to the tertiary level or allocation unit. The model has four phases. In the first phase, all the possible irrigation strategies are generated for each crop-soil-region combination. The second phase prepares the irrigation program for each strategy, taking into account the response of the crop to the water deficit. The third phase selects the optimal and efficient irrigation programs. In the fourth phase of the model, irrigation programs are modified by incorporating the conveyance and the distribution efficiencies. These irrigation programs are then used for allocating the land and water resources and preparing the water release schedule for the canal network.  相似文献   

10.
On irrigation schemes with rotational irrigation systems in semiarid tropics, the existing rules for water allocation are based on applying a fixed depth of water with every irrigation irrespective of the crops, their growth stages, and soils on which these crops are grown. However, when water resources are scarce, it is necessary to allocate water optimally to different crops grown in the irrigation scheme taking account of different soils in the command area. Allocating water optimally may lead to applying less water to crops than is needed to obtain the maximum yield. In this paper, a three stage approach is proposed for allocating water from a reservoir optimally based on a deficit irrigation approach, using a simulation-optimization model. The allocation results with a deficit irrigation approach are compared for a single crop (wheat) in an irrigation scheme in India, first with full irrigation (irrigation to fill the root zone to field capacity) and second with the existing rule. The full irrigation with a small irrigation interval was equivalent to adequate irrigation (no stress to the crop). It is found that practicing deficit irrigation enables the irrigated area and the total crop production in the irrigation scheme used for the case study to be increased by about 30–45% and 20–40%, respectively, over the existing rule and by 50 and 45%, respectively, over the adequate irrigation. Allocation of resources also varied with soil types.  相似文献   

11.
The resource allocation model, area and water allocation model, incorporates the concept of deficit irrigation through a variable depth irrigation approach, VDI. It uses this to allocate land and water resources optimally to different crops in a heterogeneous irrigation scheme with limited water under rotational water supply. This model was applied to a medium irrigation scheme in India as a case study, to obtain the land and water allocation plans. These optimal allocation plans were compared to those obtained by using the model with the existing approach (full irrigation with a fixed irrigation interval of 21 days in Rabi and 14 days in the summer season). The allocation plans were obtained taking into account the different parameters that were included in the model, such as crops and cropping pattern, soils, irrigation interval, initial reservoir storage volumes, efficiencies, and the outlet and canal capacities. The total net benefits were compared for the two cases of fixed cropping distribution and free cropping distribution and a sensitivity analysis was conducted on other parameters. Summaries of the allocation plans with the VDI approach are presented for the two cases. The total net benefits obtained with the VDI approach introduced in the model were found to be 22% higher than those obtained with the existing approach. The results of this study are thus indicative of the benefits of deficit irrigation and its application within irrigation schemes that have limited water supply.  相似文献   

12.
Benefits of Flexible Irrigation Water Supply   总被引:1,自引:0,他引:1  
This paper develops a general introduction into the concepts of a flexible irrigation water supply in rate, frequency, and duration together with the benefits to the farmer for doing so. A flexible water supply allows the farmer the opportunity to choose an on-farm irrigation practice that best meets the needs of the desired crop, the cost and availability of labor, and other local economic or social situations. As water quality issues are more closely tied to the issues of water quantity, water use efficiency must improve. A flexible irrigation water supply can lead to improved efficiencies. Non-point-source pollution and in-stream flows also become factors in other social issues such as the care of threatened and endangered species. Flexible supplies can again help. This paper also shows, through a case study, the application of a limited rate arranged system to an irrigation district in Washington State where significant flexibility has led to efficient water use and economic and environmental benefits.  相似文献   

13.
Irrigation Performance using Hydrological and Remote Sensing Modeling   总被引:2,自引:0,他引:2  
Development of water saving measures requires a thorough understanding of the water balance. Irrigation performance and water accounting are useful tools to assess water use and related productivity. Remote sensing and a hydrological model were applied to an irrigation project in western Turkey to estimate the water balance to support water use and productivity analyses. Remote sensing techniques can produce high spatial coverage of important terms in the water balance for large areas, but at the cost of a rather sparse temporal resolution. Hydrological models can produce all the terms of the water balance at a high temporal, but low spatial resolution. Actual evapotranspiration for an irrigated area in western Turkey was calculated using the surface energy balance algorithm for land (SEBAL) remote sensing land algorithm for two Landsat images. The hydrological model soil-water-atmosphere-plant (SWAP) was setup to simulate the water balance for the same area, assuming a certain distribution in soil properties, planting dates and irrigation practices. A comparison between evapotranspiration determined from SEBAL and from SWAP was made and differences were minimized by adapting the distribution in planting date and irrigation practice. The optimized input data for SWAP were used to simulate all terms of the accumulated water balance for the entire irrigation project, and subsequently used to derive the irrigation performance indicators. The innovative methodology presented is attractive as it diminishes the need of field data and combines the strong points of remotely sensed techniques and hydrological models.  相似文献   

14.
Two low energy precision application (LEPA) sprinkler methods (double-ended socks and bubblers) and two spray sprinkler methods (low-elevation spray application and overhead spray) were used to irrigate corn, grain sorghum, and winter wheat in the Southern High Plains. For full or 100% irrigation, sufficient 25-mm applications were applied to maintain soil water at non-yield-limiting levels determined in earlier research with the three crops. Deficit-irrigated treatments were irrigated on the same days as the control treatment in 25 or 33% increments of the fully irrigated amount. Irrigation water was applied to or above alternate furrows with a three-span lateral move irrigation system. Corn and sorghum were grown on beds and furrows with all furrows diked, and wheat was flat-planted without basin tillage. Grain yields increased significantly with irrigation amount (p ≤ 0.05) for all crops during all years. With full irrigation, grain yields varied little among the sprinkler methods, and yields averaged 13.5, 8.9, and 4.6 Mg∕ha for corn, sorghum, and wheat, respectively. With the 25 and 50% deficit irrigation amounts, sorghum yields with LEPA irrigation were 1.1 Mg∕ha larger than with the two spray methods. For 75% irrigation of sorghum and for deficit irrigation of the other two crops, there was little yield difference between the LEPA and spray sprinkler methods. Grain yields were significantly correlated with seasonal water use with regression coefficients of 2.89, 1.84, and 0.915 kg∕m3 for corn, sorghum, and wheat, respectively.  相似文献   

15.
The scarcity of water resources is the driving force behind modernizing irrigation systems in order to guarantee equal rights to all beneficiaries and to save water. Traditional distribution systems have the common shortcoming that water must be distributed through some rotational criteria. This type of distribution is necessary to spread the benefits of scarce resources. Irrigation systems based on on-demand delivery scheduling offer flexibility to farmers and greater potential profit than other types of irrigation schedules. However, in this type of irrigation system, the network design has to be adequate for delivering the demand during the peak period whilst satisfying minimum pressure constraints along with minimum and maximum velocity constraints at the farm delivery points (hydrants) and in the pipes, respectively. In this paper, optimum design and management of pressurized irrigation systems are considered to be based on rotation and on-demand delivery scheduling using a genetic algorithm. Comparison is made between the two scheduling techniques by application to two real irrigation systems. Performance criteria are formulated for the optimum design of a new irrigation system and better management of an existing irrigation system. The design and management problems are highly constrained optimization problems. Special operators are developed for handling the large number of constraints in the representation and fitness evaluation stages of the genetic algorithm. The performance of the developed genetic algorithm is assessed in comparison to traditional optimization techniques. It is shown that the methodology developed performs better than the linear programming method and that solutions generated by the modified genetic algorithm show an improvement in capital cost. The method is also shown to perform better in satisfying the constraints. Comparison between on-demand and rotation delivery scheduling shows that a greater than 50% saving can be achieved in total cost at the cost of reducing flexibility in the irrigation time. Finally, it is shown that minimizing standard deviation of flow in pipes does not result in the best distribution, and therefore minimum cost, neither for systems with uniform flows or those with large variations in discharge at hydrants.  相似文献   

16.
Water resources are limited in many agricultural areas. One method to improve the effective use of water is to improve delivery service from irrigation canals. This can be done by applying automatic control methods that control the gates in an irrigation canal. The model predictive control (MPC) is one such advanced control method. In this article, the MPC is used to deliver irrigation water to the WM Canal at the Maricopa-Stanfield Irrigation and Drainage District. The tests show that the water is efficiently delivered to the users and water level deviations at all locations are small. The control is compared to the results from an advanced Linear Quadratic Regulator control method, also tested on the actual canal.  相似文献   

17.
Climate change will lead to changed demands on existing irrigation systems. This paper presents a methodology for investigating the performance of irrigation networks under climate change, and applies this to an irrigation network in Cordoba, southern Spain. The methodology uses emission scenarios (A2 and B2) developed by the Intergovernmental Panel on Climate Change. A global climate model (HadCM3) is used with downscaling to predict climate variables for 2050 and 2080 under the emission scenarios. European agricultural policy scenarios are used to predict future cropping patterns. Irrigation water requirements are then estimated for various combinations of these climate and cropping pattern scenarios, and the performance of the irrigation network is evaluated in terms of the equity and adequacy of pressure at the outlets, using EPANET. The methodology was applied to the Fuente Palmera irrigation district, which supplies water on-demand for drip irrigation. The results show that climate change would have a major impact on network performance with the existing cropping pattern, but that expected changes in cropping pattern would reduce this impact.  相似文献   

18.
Irrigation application of effluent from lagoon based systems is an important aspect of animal manure management in swine rearing facilities. This paper describes a procedure for obtaining least-cost components and operational parameters for an irrigation system used to apply liquid manure. The paper employs propositions from hydraulics—affinity laws and Hazen–Williams formula—to derive statistically estimable relationships between pressure, liquid output, power requirement, and impeller speed of an irrigation system. Coefficient estimates are then used in a spreadsheet based decision support system that employs an optimization program to select the least costly irrigation system. A practical application is showcased through simulation of three hypothetical swine farms. Main findings are that the use of this optimization procedure can result in cost savings for swine growers applying manure by irrigation and that the cost savings potentials increase with the farm size.  相似文献   

19.
This paper presents a model to estimate the soil salinity for different on-farm management strategies under irrigated conditions. It is based on research in the Mani?oba irrigation scheme in northeast Brazil, where upward flow from the shallow water table is the main cause of soil salinization. The model calculates soil water and salt balances for the topsoil. It is calibrated for the topsoil of abandoned plots and for the root zone (0.9?m) of mango trees. Simulating the effect of different management scenarios on soil salinity may help to organize the switch from intensive surface irrigation to more efficient irrigation practices.  相似文献   

20.
A Paradigm Shift in Irrigation Management   总被引:1,自引:0,他引:1  
In coming decades, irrigated agriculture will be called upon to produce up to two thirds of the increased food supply needed by an expanding world population. But the increasing dependence on irrigation will coincide with accelerating competition for water and rising concern about the environmental effects of irrigation. These converging pressures will force irrigators to reconsider what is perhaps the most fundamental precept of conventional irrigation practice; that crop water demands should be satisfied in order to achieve maximum crop yields per unit of land. Ultimately, irrigated agriculture will need to adopt a new management paradigm based on an economic objective—the maximization of net benefits—rather than the biological objective of maximizing yields. Irrigation to meet crop water demand is a relatively simple and clearly defined problem with a singular objective. Irrigation to maximize benefits is a substantially more complex and challenging problem. Identifying optimum irrigation strategies will require more detailed models of the relationships between applied water, crop production, and irrigation efficiency. Economic factors, particularly the opportunity costs of water, will need to be explicitly incorporated into the analysis. In some cases the analysis may involve multi-objective optimization. The increased complexity of the analysis will necessitate the use of more sophisticated analytical tools. This paper examines the underlying logic of this alternative approach to irrigation management, explores the factors that will compel its adoption, and examines its economic and environmental implications. Two important concerns, sustainability and risk, are discussed in some depth. Operational practices for implementing the new approach are contrasted with current, conventional irrigation practices. Some of the analytical tools that might be employed in the search for optimum irrigation strategies are reviewed. Finally, the limited and largely intuitive efforts that have already been made to implement this new paradigm are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号