首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Optimal Irrigation Planning under Water Scarcity   总被引:4,自引:0,他引:4  
In this study optimal irrigation planning strategies are developed for the Nagarjuna Sagar Right Canal command in the semiarid region of South India. The specific objective of the study is to allocate the available land and water resources in a multicrop and multiseason environment and to obtain irrigation weeks requiring irrigation of a fixed depth of 40 mm. The problem is solved in four stages. First, weekly crop water requirements are calculated from the evapotranspiration model by the Penman-Monteith method. Second, seasonal crop water production functions are developed using the single-crop intraseasonal allocation model for each crop in all seasons. Third, allocations of area and water are made at seasonal and interseasonal levels by deterministic dynamic programming, maximizing the net annual benefit from the project. And fourth, once optimal seasonal allocations have been attained, irrigation scheduling is performed by running a single-crop intraseasonal allocation model. Optimal cropping pattern and irrigation water allocations are then made with full and deficit irrigation strategies for various levels of probability of exceedance of the expected annual water available. The results reveal that the optimization approach can significantly improve the annual net benefit with a deficit irrigation strategy under water scarcity.  相似文献   

2.
Irrigation Scheduling with Genetic Algorithms   总被引:1,自引:0,他引:1  
A typical irrigation scheduling problem is one of preparing a schedule to service a group of outlets that may be serviced simultaneously. This problem has an analogy with the classical multimachine earliness/tardiness scheduling problem in operations research (OR). In previously published work, integer programming was used to solve irrigation scheduling problems; however, such scheduling problems belong to a class of combinatorial optimization problems known to be computationally demanding. This is widely reported in OR literature. Hence integer programs (IPs) can be used only to solve relatively small problems typically in a research environment where considerable computational resources and time can be allocated to solve a single schedule. For practical applications, metaheuristics such as genetic algorithms, simulated annealing, or tabu search methods need to be used. However, these need to be formulated carefully and tested thoroughly. The current research explores the potential of genetic algorithms to solve the simultaneous irrigation scheduling problem. For this purpose, two models are presented: the stream tube model and the time block model. These are formulated as genetic algorithms, which are then tested extensively, and the solution quality is compared with solutions from an IP. The suitability of these models for the simultaneous irrigation scheduling problem is reported.  相似文献   

3.
Water is a limited resource in agricultural production in arid climates. Under such conditions, high irrigation efficiency can be obtained either through implementation of efficient irrigation systems such as drip or sprinkler systems or through the age-old practice of deficit irrigation with gravity systems. The method used to increase irrigation efficiency is often dictated by economic and/or social factors. In either case, the effectiveness of water management at the farm level needs to be evaluated by measuring irrigation efficiency. The objective of this study was to evaluate the irrigation efficiencies for three crops in Southern New Mexico using the chloride technique. The chloride technique is a simple method in which the natural chloride in the irrigation water is used as a tracer to estimate the leaching fraction and the irrigation efficiency at the farm level. Soil samples were collected from various fields in 15 cm increments to a depth of 180 cm at the end of the irrigation season. The samples were analyzed for moisture and chloride content. In addition to the chloride technique, on-farm irrigation efficiencies were measured using applied water, yield, and water production functions. Water production functions and yields were used to estimate total evapotranspiration while flow measurements were used to calculate the amount of applied water. The results showed that high irrigation efficiency can be accomplished using deficit irrigation. Irrigation efficiency values ranged from 83 to 98%. Irrigation efficiencies using the chloride technique were compared with efficiencies estimated from direct flow measurements. The differences between the two methods ranged from 2 to 11.4%. The results showed that even though the chloride technique is subject to sampling errors and simplified theoretical assumptions, it can be used to estimate on-farm irrigation efficiency with considerable accuracy.  相似文献   

4.
In a companion paper a model for the simulation of water flows in irrigation districts was formulated. The model combines a series of modules specialized in surface irrigation, open channel distribution networks, crop growth modeling, irrigation decision making, and hydrosaline balance. The objective of this paper is to calibrate, validate, and apply the model, using the Irrigation District Five of Bardenas (Spain) as a study area. Two years of study were used for the analysis, which could be classified as normal (2000) and dry (2001) from the point of view of crop water requirements. Model calibration was performed in one of the 11 hydrological sectors in which the district is divided. The control variable was the monthly water demand, while the calibration variables were related to irrigation operation and scheduling. The seasonal differences in observed and simulated water demand amounted to 0.9 and 1.9% for 2000 and 2001, respectively. Model validation was performed in the rest of the sectors, and the regression line of observed versus simulated monthly water demand could not be distinguished from a 1:1 line in both years. Model application explored scenarios based on management improvement (controlling the irrigation time) and structural improvement (increasing drainage water reuse for irrigation). These scenarios permitted one to sharply reduce water demand, halve the irrigation return flows, and reduce the daily irrigation period from 24?to?16?h.  相似文献   

5.
This paper presents a new method to design pressurized branched irrigation networks. This method is called recursive design and is based on application of the problem-solving technique known as backtracking to the problem of the optimum design of pressurized branched irrigation networks with a known delivery piezometric head (pipe-sizing). Recursive design is a heuristic optimizer, like genetic algorithms, and has been implemented in a fast, versatile computer application. After presenting and precisely defining the design problem, the writers review the theoretical foundations of some of the main existing design methods: maximum velocity, recommended velocity, Mougnie velocity, constant hydraulic slope, Lagrange multipliers, linear programming, Labye’s method, and genetic algorithms. Next, the writers explain what recursive design consists of and apply its methodology in detail to a simple network. In the results section, the solutions obtained by recursive design are compared with those obtained by the other design methods, giving satisfactory results. For example, in an analyzed standard network, genetic algorithms take more than 20?minutes to offer a solution, whereas recursive design offers a cheaper solution with less than 3?seconds of computation time.  相似文献   

6.
Irrigation Scheduling with Travel Times   总被引:1,自引:0,他引:1  
In preparing water allocation schedules for fields in a lateral unit, the time required for water to travel from one point on a lateral to another can be significant and is dependent on the sequence in which users abstract water. This paper illustrates the problem of ignoring travel time and/or considering travel time to be sequence independent. For two users, each requesting water for a duration of 4 h, by assuming travel time to be sequence independent, one user receives water for 5 h, a 25% increase, and the other receives water for only 3 h, a 25% decrease. This paper presents a formulation of the irrigation scheduling problem for sequential users with sequent dependent travel time. The formulation is implemented as an integer program and applied to part of a lateral unit on the Juan Distributary, Haryana, India. Two models are presented, the first of which allows for noncontiguous jobs, i.e., idle time is permitted between jobs. The second model does not permit noncontiguous jobs.  相似文献   

7.
Significant improvements in the profitability and sustainability of irrigated areas can be obtained by the application of new technologies. In this work, a model for the simulation of water flows in irrigation districts is presented. The model is based on the combination of a number of modules specialized on surface irrigation, open channel distribution networks, crop growth modeling, irrigation decision making, and hydrosaline balances. These modules are executed in parallel, and are connected by a series of variables. The surface irrigation module is based on a numerical hydrodynamic routine solving the Saint Venant equations, including the heterogeneity of soil physical properties. The simulation of water conveyance is performed on the basis of the capacity of the elements of the conveyance network. Crop growth is simulated using a scheme derived from the well-known model CropWat. The irrigation decision making module satisfies water orders considering water stress, yield sensitivity to stress, multiple water sources, and the network capacity. Finally, the hydrosaline module is based on a steady state approach, and provides estimations of the volume and salinity of the irrigation return flows for the whole irrigation season. The application of the model to district irrigation management and modernization studies may be limited by the volume of data required. In a companion paper, the model is calibrated, validated, and applied to a real irrigation district.  相似文献   

8.
A three-step computational model for the optimal weekly interseasonal operation of a multipurpose (irrigation, environmental, domestic/industrial) reservoir is developed. Environmental and domestic/industrial uses are evaluated and considered as priority uses that induce deficit irrigation conditions. The spatiotemporal variability of the irrigation water demand at the basin level is accounted for. The objective is the maximization of the interseasonal agricultural profitability at the basin level. The optimal allocation process solves the competition for water on different temporal scales (weekly, seasonal, and interseasonal) and on different spatial scales (in basins among irrigation areas and in irrigation areas among crops). The three steps are simulation model operating at the soil-crop unit level, optimization model operating at the multicrop area level, and optimization model operating at the basin level. This consists of parametric dynamic programming for which an analytical objective function was defined and an analytical solution was determined. This solution replaces the iterative procedure, so that it is possible to account for all the variables without running into the “curse of dimensionality” problem. The environmental use allocation is expressed as a function of a parameter, the variations of which give different environmental protection levels. The validation case study emphasizes the importance of considering the spatiotemporal variability of the demand. This is consistent with the “computationally tractable” model algorithm.  相似文献   

9.
Irrigation application of effluent from lagoon based systems is an important aspect of animal manure management in swine rearing facilities. This paper describes a procedure for obtaining least-cost components and operational parameters for an irrigation system used to apply liquid manure. The paper employs propositions from hydraulics—affinity laws and Hazen–Williams formula—to derive statistically estimable relationships between pressure, liquid output, power requirement, and impeller speed of an irrigation system. Coefficient estimates are then used in a spreadsheet based decision support system that employs an optimization program to select the least costly irrigation system. A practical application is showcased through simulation of three hypothetical swine farms. Main findings are that the use of this optimization procedure can result in cost savings for swine growers applying manure by irrigation and that the cost savings potentials increase with the farm size.  相似文献   

10.
Irrigation Scheduling. I: Integer Programming Approach   总被引:1,自引:0,他引:1  
This paper shows how a sequential irrigation schedule for a tertiary unit can be interpreted as a single machine scheduling problem with earliness, tardiness, and a common deadline. An integer program solution is presented for this irrigation scheduling problem. Two different models are presented to reflect different management options at the tertiary level. The first model allows jobs to be scheduled noncontiguously. In the second model only contiguous jobs are allowed. The second model has three submodels reflecting the various ways in which contiguous jobs can be scheduled over a fixed interval. Earlier work in determining unit costs of earliness/tardiness is reviewed and an alternative improved method is suggested. The models presented in this paper are applied to a tertiary unit with 16 users, both as a single interval and multi-interval irrigation scheduling problem. An alternative integer program is also presented which although computationally more efficient can only be used for single period scheduling problems. The models developed in this paper can be used to solve small scheduling problems and also to calibrate the heuristics as presented in the companion paper.  相似文献   

11.
Minimum cost irrigation network design has been conventionally based on crisp pressure requirements at the hydrants of the network. In order to incorporate obscure knowledge on these pressure requirements at the design stage, an interactive fuzzy integer programming methodology is proposed. In the integer linear programming, formulation membership functions are adopted for expressing pressure constraints. Also, the interactive character of the proposed methodology enables the designer to select a less demanding range of pressures at some “critical” hydrants. By using the proposed methodology significant economic gains may be achieved reducing the cost of the network, since the energy line is adapted more satisfactorily to the ranging pressure requirements. Finally, an application of the methodology to an irrigation network is presented.  相似文献   

12.
Optimal Design of Pressurized Irrigation Subunit   总被引:1,自引:0,他引:1  
A linear programming (LP) model is presented for optimal design of the pressurized irrigation system subunit. The objective function of the LP is to minimize the equivalent annual fixed cost of pipe network of the irrigation system and its annual operating energy cost. The hydraulic characteristics in the irrigation subunit are ensured by using the length, energy conservation, and pressure head constraints. The input data are the system layout, segment-wise cost and hydraulic gradients in all the alternative pipe diameters, and energy cost per unit head of pumping water through the pipeline network. The output data are: segment-wise lengths of different diameters, operating inlet pressure head, and equivalent annual cost of the pipeline network. The explicit optimal design is demonstrated with design examples on lateral and submain or manifold of pressurized irrigation systems. The effect of the equations for friction head loss calculation on optimization procedure is investigated through the design example for microirrigation manifold. The performance evaluation of the proposed model in comparison with the analytical methods, graphical methods, numerical solutions, and dynamic programming optimization model reveals the good performance of the proposed model. The verification of operating inlet pressure head obtained by the proposed model with accurate numerical step-by-step method suggested that it is mostly accurate.  相似文献   

13.
Volume Compensation Method for Routing Irrigation Canal Demand Changes   总被引:3,自引:0,他引:3  
This paper examines the problem of routing known water demands through gate-controlled, open-channel irrigation delivery systems. Volume-compensation principles were used to route multiple demands in multiple-pool canal systems. The volume-compensation method schedules each demand change individually under the assumption of a series of steady states and superimposes the individual results. Volume-compensation routing schedules were computed for two of the test cases proposed by the ASCE Task Committee on Canal Automation. Alternative routing schedules were computed with the gate-stroking method, which is an inverse solution of the unsteady-flow equations. Both solutions were tested through unsteady-flow simulation. While not as effective as gate-stroking solutions, volume-compensation solutions performed satisfactorily under ideal flow control conditions. When subjected to realistic operational constraints, specifically constraints on the flow regulation interval, and also to incorrect canal hydraulic roughness information, both methods performed similarly.  相似文献   

14.
A 2-year study was conducted at a seepage-irrigated vegetable farm in south Florida to develop and evaluate an improved, soil moisture-based irrigation management practice that could potentially reduce irrigation water use, prevent water quality impairment, and maintain or improve crop yield. The improved practice reduced irrigation water use by 36% compared to the conventional irrigation management. Moreover, the improved practice also increased rainfall retention and decreased runoff events by lowering the water table 13?cm compared to the conventional practice. Total dissolved phosphorus (P) concentrations in groundwater were higher (p<0.01) for the improved practice compared with the conventional practice in two of the three fields where ground water quality was monitored. Higher P concentrations for the improved practice were likely due to the dilution effect. Statistically, no differences (p>0.05) were observed in groundwater nitrogen (N) (NOx–N, NH4–N, and total dissolved N) concentrations between the improved and the conventional practices. Similarly, no statistical difference was observed in crop yield between the improved and the conventional practices, although the average total yield was higher for the improved practice. The improved practice also reduced the incidence of plant disease compared to the conventional practice which resulted in crop failure in some fields. Thus, use of the improved practice reduced irrigation water use without impacting crop yield.  相似文献   

15.
Simulation studies have demonstrated that automatic control of canals is more effective when feedforward scheduling, or routing of know demand changes, is combined with centralized, automatic, distant, downstream water level control. In practice, few canals use this approach. To help further develop and test this strategy, the writers developed SacMan, or Software for Automatic Canal Management. The software was tested on the WM lateral of the Maricopa Stanfield Irrigation and Drainage District, Stanfield, Arizona. Initial testing was done during 2002 and 2003. In 2004, SacMan was used to operate the canal nearly continuously for a period of 30 days. Tests were conducted during normal operations, during which more than 50 delivery changes to users were scheduled and implemented with SacMan. In addition, SacMan responded to unscheduled changes such as emergency shut off and power outages that reduced well flow that had been pumping into the canal. Additional “manufactured” tests were conducted to compare different control methods. This paper describes the overall SacMan control scheme and presents a summary of the tests conducted and typical results. Companion papers examine the results of these tests in more detail.  相似文献   

16.
Quantifying Management of Irrigation and Drainage Systems   总被引:1,自引:0,他引:1  
To evaluate the performance of irrigation systems, different indicators have been used by researchers. In this study some of the water management problems of three different irrigation systems in Iran are presented. In addition, the water delivery performance of the Doroodzan Irrigation and Drainage Network in southern Iran is evaluated in detail. The analyses included wet and dry seasons and were based on the indicators of overall project water delivery efficiency (ep) and the monthly water requirement of crops. The distribution and conveyance of water in the Doroodzan Irrigation Network was unreliable in both seasons. With an overall project efficiency of around 46%, about 20% of the total delivered water was distributed unreliably. Water distribution equity along tertiaries was also found to be poor. A contributing factor could be the poor operation and maintenance of gates.  相似文献   

17.
18.
Automatic Tuning of PI Controllers for an Irrigation Canal Pool   总被引:2,自引:0,他引:2  
This paper presents a method to automatically tune decentralized proportional integral (PI) controllers for an irrigation canal pool. The auto tune variation (ATV) method is based on a relay experiment, which generates small amplitude oscillations of the canal pool. The ATV procedure can be used to get the integrator delay model parameters of a canal pool, which in turn can be used to tune a PI controller using classic rules, or other rules such as the ones proposed by Litrico and Fromion. This method does not require advanced automatic control knowledge and is implemented in the SIC software developed by Cemagref, which also incorporates a supervisory control and data acquisition module for real-time control. The ATV method is evaluated by simulations and experiments on a real irrigation canal located in the South of France, for local upstream, local downstream, and distant downstream controller tuning.  相似文献   

19.
The semiarid climate of the majority of agricultural districts in the Mediterranean means that water is a key factor limiting production. It is therefore necessary to distribute water in the most efficient way possible and foment the sustainable use of this valuable resource. It is a difficult task to ascertain whether the use of water in an irrigation district is efficient or not, given that water as a resource cannot be considered in an isolated manner. The development of techniques for data envelopment analysis (DEA) has made it possible to evaluate, in a global manner, where the application of water is most efficient. DEA techniques consider the production process as a set of inputs which obtain a set of outputs in the form of profits. The study of efficiency as a combination of resources allows us to assess when the application of water will lead to greater profitability and hence aid water management authorities in distributing the water of their basins in an appropriate manner. In this study, the data envelopment analysis Baker, Charnes, and Cooper model is applied to all of the irrigation districts in Andalusia (Southern Spain). Using the Wilcoxon–Mann–Withney statistical test we conclude that extensive agriculture (located in the interior) and intensive agriculture (on the littoral) are difficult to compare. Although intensive agriculture with localized irrigation systems achieves the highest efficiency values, the spatial distribution of efficiencies is of great utility in detecting local inefficiencies. It is also useful in providing general guidelines as to which trends should be followed in order to obtain the greatest possible efficiency.  相似文献   

20.
Set Sprinkler Irrigation and Its Cost   总被引:1,自引:0,他引:1  
In this study, annual water application costs per unit area (ha) have been analyzed at the level of irrigation subunit in set sprinkler irrigation systems designed with pipes of different materials. In the cost, investment (pumping, pipes, sprinklers, ditches), energy, labor, maintenance, and water costs have been considered. Four systems were studied: one with buried pipes, in a permanent solid-set system, using: (a) polyvinyl chloride with buried pipes (PVCb), and three with pipes on the surface in surface solid-set systems, using (b) polyvinyl chloride pipes, (c) polyethylene pipes, and (d) aluminum pipes. The correct selection of the irrigation subunit size and shape can lead to a significant decrease in cost. The most economic irrigation subunits, among the four systems studied, were those formed by four laterals and a number of sprinklers per lateral of 10, 9, and 6 at 12?m×12?m, 12?m×18?m, and 18?m×18?m spacing, respectively. The most influential factor on the annual water application cost was spacing. Considering total annual cost, water cost was the most important, followed by investment and energy. Among the analyzed systems, the permanent system using PVCb produced the lowest annual water application cost per unit area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号