首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
超临界辅助雾化法制备红霉素超细微粒   总被引:2,自引:1,他引:2  
超临界辅助雾化(SAA)过程是近两年才提出的一种制备纳、微米粉体微粒的新方法,是一种高效的超细粉体制备技术,在药物超细化处理方面有广阔的应用前景.在自建的超临界辅助雾化过程实验装置上,以红霉素-乙醇-二氧化碳系统为研究对象,分别研究了混合器压力和温度、溶液浓度及进液速率对微粒形态和粒径的影响.实验结果表明:选用乙醇做溶剂可制备出粒径在1~3 μm的红霉素超细微粒,大部分微粒形态呈完整的球形;各影响因素对微粒粒径及粒径分布均有不同程度的影响,其中混合器压力对微粒粒径及粒径分布的影响最明显,混合器温度的影响最小,微粒粒径及粒径分布可通过改变操作参数进行控制;在本研究范围内,最优操作条件为混合器压力10.5 MPa,混合器温度70℃,溶液浓度15 mg·min-1,进液速度9 mL·min-1.实验制得的微粒适用于吸入式给药.  相似文献   

2.
分析了超临界流体辅助雾化(SAA)过程,发现饱和器内超临界二氧化碳与溶液的混合是SAA成功的关键因素之一,由此引入了水力空化混合器以强化饱和器内两相间的传质。在自行组建的引入水力空化混合器的超临界流体辅助雾化(SAA-HCM)装置上,以罗红霉素为模型药物,考察了混合器压力、沉淀器温度、溶剂、进料中CO2与液体溶液流量比(R)和溶液浓度对微粒形态和粒径的影响。结果表明,水力空化混合器能有效地强化两相间的传质,SAA-HCM工艺可制备出罗红霉素超细微粒,大部分微粒形态呈球形,通过改变操作参数可制得粒径在1~3 μm的适于吸入式给药的气溶胶药物微粒和粒径小于1 μm的超细微粒。  相似文献   

3.
超临界反溶剂过程制备银杏叶提取物超细微粒   总被引:7,自引:0,他引:7  
超临界反溶剂过程是近年来提出的一种制备纳微米粉体材料的新方法。应用超临界反溶剂过程实验装置制备银杏提取物(GBE)超细微粒,实验中以乙醇为溶剂,超临界CO2为反溶剂,制备出平均直径在1μm至2μm范围内的GBE超细微粒。同时研究了操作压力、操作温度及二氧化碳与溶液流率比等操作参数对制备的超细微粒粒径、形态及粒径分布的影响。实验结果表明:操作压力、温度对制备的GBE微粒影响较为显著。  相似文献   

4.
玉米醇溶蛋白是一种具有强疏水性的天然植物蛋白,在食品和医药等行业具有良好的应用潜力。本文采用强化混合超临界流体辅助雾化技术(SAA-HCM)制备玉米醇溶蛋白超细微粒,研究相关实验参数如混合气压力与温度、沉淀器温度、玉米醇溶蛋白浓度及乙醇浓度等对微粒形貌、粒径的影响。实验结果表明在9.0 MPa的混合器压力,混合器温度和沉淀器温度分别为50℃和60℃,玉米醇溶蛋白浓度为20 g?L-1,乙醇浓度为80%条件下,制得的微粒具有球形度高、分散性好、粒径可控制等优点,且平均粒径约为3μm。此外,本文以醇溶蛋白为载体、VD3为模拟活性药物制备载药微粒,并对其形貌、载药率和药物释放行为做初步探索,取得了合理的包埋缓释效果。  相似文献   

5.
SAS-A技术制备聚乙二醇微粒   总被引:1,自引:0,他引:1  
超临界流体抗溶剂-雾化(SAS-A)技术研究用聚乙二醇(PEG6000)/乙醇/水体系制备聚乙二醇(PEG)微粒。探讨预膨胀压力、溶液浓度和溶液流量等工艺参数对微粒形貌及粒径的影响;重点探讨SAS-A技术中使用不同溶剂对颗粒形态和粒径分布的影响。结果表明,以丙酮和乙醇为溶剂的SAS-A技术可以制得形态基本上为球形的PEG微粒,粒径分布分别可以控制在1~5μm和2~15μm之间;增大预膨胀压力容易得到分散的球形微粒,并能减小微粒粒径,微粒粒径分布也随之变窄。对应PEG/丙酮体系,溶液浓度升高,所得到的微粒粒径增大;对应PEG/乙醇体系,溶液浓度对粒径大小影响不大,但溶液浓度增大会使粒径分布变宽。采用乙醇水溶液为溶剂时,初始乙醇浓度越低,移出水的效果越差,易形成结块的不规则微粒。  相似文献   

6.
超临界CO2抗溶剂法制备乙基纤维素微球试验   总被引:5,自引:0,他引:5  
通过自行设计的超临界CO2微球制备装置,利用乙基纤维素丙酮混合溶液,制备了粒径偏差较小、表面光滑与球形度较好的乙基纤维素微球,采用正交试验讨论了温度、压力、溶液质量浓度、CO2流量对微球粒径与粒径分布的影响,分析了进气与进液方式对试验过程的影响。试验结果表明:改变工艺参数,可在较大范围内调控微球大小,所制微球平均粒径为0.2—2.6μm,粒径偏差为0.07—0.85μm;溶液质量浓度是主要影响因素;不同的汽液接触方式也将影响微球的大小。  相似文献   

7.
分别利用二氯甲烷、丙酮和乙醇作为溶剂采用超临界流体增强溶液分散法(SEDS)制备了乙基纤维素微粒,考察了不同压力、温度和溶剂条件下所制备微粒的粒径大小及形态。实验表明:在体系亚临界和超临界状态下制备的微粒粒径及形态完全不同;聚合物的玻璃化温度的降低对微粒的形态影响比较大;溶剂对微粒粒径及形态也有较大影响,特别是对可制备微粒的压力及温度的范围的影响。  相似文献   

8.
超临界流体强制分散溶液技术以其独特的优点,在药物超细化和微胶囊化等方面得到了广泛的应用。介绍了该技术的基本原理及工艺改进的研究情况,综述了该技术在药物及药物载体超细微粒和药物微囊制备方面的应用进展。利用SEDS过程能制备粒度分布窄的微米级甚至纳米级的微粒,能够将残留溶剂减小到非常低的质量浓度并且容易控制微粒粒径及粒度分布。  相似文献   

9.
气体抗溶剂法制备乙基纤维素微细颗粒   总被引:1,自引:0,他引:1       下载免费PDF全文
利用超临界流体制备微细颗粒是一门新兴的技术,将其中的气体抗溶剂(GAS)法首次应用于制备乙基纤维素微粒,在系统的近临界和超临界范围进行了较为详细的实验研究.在实验范围内,制得微粒的平均粒径为2~15 μm.研究得到温度、压力、不同有机溶剂对微粒粒径及其分布的影响,并应用相平衡知识对结果进行了分析和讨论.此研究为制备粒径较小,具有缓释、靶向、黏附等功能的乙基纤维素含药微粒做了准备.  相似文献   

10.
利用超临界流体制备微细颗粒是一门新兴的技术 ,将其中的气体抗溶剂 (GAS)法首次应用于制备乙基纤维素微粒 ,在系统的近临界和超临界范围进行了较为详细的实验研究 .在实验范围内 ,制得微粒的平均粒径为 2~ 15 μm .研究得到温度、压力、不同有机溶剂对微粒粒径及其分布的影响 ,并应用相平衡知识对结果进行了分析和讨论 .此研究为制备粒径较小 ,具有缓释、靶向、黏附等功能的乙基纤维素含药微粒做了准备 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号