首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The acetylcholine-binding protein (AChBP) is homologous to the ligand-binding domain of the nicotinic acetylcholine receptor (nAChR) and other members of the Cys-loop family of neurotransmitter receptors. The high-resolution X-ray structures of AChBP mean it has been used as a model from which to understand agonist and antagonist binding to nAChRs. We present here a molecular dynamics (MD) study of AChBP with nicotine and carbamylcholine bound. Our results suggest that the ligand imposes rigidity on the binding pocket residues. The simulations also suggest that the protein undergoes breathing motions with respect to the five-fold axis, a motion that has been postulated to be related to gating in the nAChR. We analyzed the behaviour of the water molecules in and around the binding site and found that they occupied five distinct sites within the binding pocket. Water occupied these sites in the absence of ligand, but the presence of ligand increased the probability that a water molecule would be found in these sites. Finally, we demonstrate how the positions of these waters might be used in the design of new ligands by comparing the positions of these sites with other recent structures.  相似文献   

2.
With the reversible sequential (ReSeq) binding assay,we present a novel approach for the ultrasensitive profiling of receptor function in single living cells. This assay is based on the repetitive application of fluorescent ligands that have fast association-dissociation kinetics. We chose the nicotinic-acetylcholine receptor (nAChR) as a prototypical example and performed ReSeq equilibrium, kinetic, and competition-binding assays using fluorescent derivatives of the antagonist alpha-conotoxin GI (alpha-CnTx). Thereby, we determined the binding constants of unlabeled alpha-CnTx and d-tubocurarine. The high selectivity of alpha-CnTx for muscle-type nAChR made it possible to observe specific binding even in the presence of other nAChR subtypes. Imaging of individual nAChRs and ligand-binding cycles to single cells in microfluidic devices demonstrated the ultimate miniaturization and accuracy of ReSeq-binding assays even at low receptor-expression levels. We expect our approach to be of generic importance for functional screening of compounds or membrane receptors, and for the detailed characterization of rare primary cells.  相似文献   

3.
The appearance of the SARS-CoV-2 virus initiated many studies on the effects of the virus on the human body. So far, its negative influence on the functioning of many morphological and physiological units, including the nervous system, has been demonstrated. Consequently, research has been conducted on the changes that SARS-CoV-2 may cause in the cholinergic system. The aim of this study is to review the latest research from the years 2020/2021 regarding disorders in the cholinergic system caused by the SARS-CoV-2 virus. As a result of the research, it was found that the presence of the COVID-19 virus disrupts the activity of the cholinergic system, for example, causing the development of myasthenia gravis or a change in acetylcholine activity. The SARS-CoV-2 spike protein has a sequence similar to neurotoxins, capable of binding nicotinic acetylcholine receptors (nAChR). This may be proof that SARS-CoV-2 can bind nAChR. Nicotine and caffeine have similar structures to antiviral drugs, capable of binding angiotensin-converting enzyme 2 (ACE 2) epitopes that are recognized by SARS-CoV-2, with the potential to inhibit the formation of the ACE 2/SARS-CoV-2 complex. The blocking is enhanced when nicotine and caffeine are used together with antiviral drugs. This is proof that nAChR agonists can be used along with antiviral drugs in COVID-19 therapy. As a result, it is possible to develop COVID-19 therapies that use these compounds to reduce cytokine production. Another promising therapy is non-invasive stimulation of the vagus nerve, which soothes the body’s cytokine storm. Research on the influence of COVID-19 on the cholinergic system is an area that should continue to be developed as there is a need for further research. It can be firmly stated that COVID-19 causes a dysregulation of the cholinergic system, which leads to a need for further research, because there are many promising therapies that will prevent the SARS-CoV-2 virus from binding to the nicotinic receptor. There is a need for further research, both in vitro and in vivo. It should be noted that in the functioning of the cholinergic system and its connection with the activity of the COVID-19 virus, there might be many promising dependencies and solutions.  相似文献   

4.
(1) Background: The lung cholinergic pathway is important for controlling pulmonary inflammation in acute lung injury, a condition that is characterized by a sudden onset and intense inflammation. This study investigated changes in the expression levels of nicotinic and muscarinic acetylcholine receptors (nAChR and mAChR) in the lung during acute lung injury. (2) Methods: acute lung injury (ALI) was induced in wild-type and cholinergic-deficient (VAChT-KDHOM) mice using intratracheal lipopolysaccharide (LPS) instillation with or without concurrent treatment with nicotinic ligands. Bronchoalveolar lavage fluid was collected to evaluate markers of inflammation, and then the lung was removed and processed for isolation of membrane fraction and determination of acetylcholine receptors level using radioligand binding assays. (3) Results: LPS-induced increase in lung inflammatory markers (e.g., neutrophils and IL-1β) was significantly higher in VAChT-KDHOM than wild-type mice. In contrast, LPS treatment resulted in a significant increase in lung’s α7 nicotinic receptor level in wild-type, but not in VAChT-KDHOM mice. However, treatment with PNU 282987, a selective α7 nicotinic receptor agonist, restored VAChT-KDHOM mice’s ability to increase α7 nicotinic receptor levels in response to LPS-induced acute lung injury and reduced lung inflammation. LPS also increased muscarinic receptors level in VAChT-KDHOM mice, and PNU 282987 treatment reduced this response. (4) Conclusions: Our data indicate that the anti-inflammatory effects of the lung cholinergic system involve an increase in the level of α7 nicotinic receptors. Pharmacological agents that increase the expression or the function of lung α7 nicotinic receptors have potential clinical uses for treating acute lung injury.  相似文献   

5.
An increasing number of high-resolution structures of membrane-embedded ion channels (or soluble homologues) have emerged during the last couple of years. The most pressing need now is to understand the complex mechanism underlying ion-channel function. Time-resolved photoaffinity labeling is a suitable tool for investigating the molecular function of membrane proteins, especially when high-resolution structures of related proteins are available. However until now this methodology has only been used on the Torpedo nicotinic acetylcholine receptor (nAChR). nAChRs are allosteric cation-selective receptor channels that are activated by the neurotransmitter acetylcholine (ACh) and implicated in numerous physiological and pathological processes. Time-resolved photoaffinity labeling has already enabled local motions of nAChR subdomains (i.e. agonist binding sites, ion channel, subunit interface) to be understood at the molecular level, and has helped to explain how small molecules can exert their physiological effect, an important step toward the development of drug design. Recent analytical and technical improvements should allow the application of this powerful methodology to other membrane proteins in the near future.  相似文献   

6.
The functional expression of the cockroach Pameα7 nicotinic acetylcholine receptor subunit has been previously studied, and was found to be able to form a homomeric receptor when expressed in Xenopus laevis oocytes. In this study, we found that the neonicotinoid insecticide imidacloprid is unable to activate the cockroach Pameα7 receptor, although thiacloprid induces low inward currents, suggesting that it is a partial agonist. In addition, the co-application or 5 min pretreatment with 10 µM imidacloprid increased nicotine current amplitudes, while the co-application or 5 min pretreatment with 10 µM thiacloprid decreased nicotine-evoked current amplitudes by 54% and 28%, respectively. This suggesting that these two representatives of neonicotinoid insecticides bind differently to the cockroach Pameα7 receptor. Interestingly, the docking models demonstrate that the orientation and interactions of the two insecticides in the cockroach Pameα7 nAChR binding pocket are very similar. Electrophysiological results have provided evidence to suggest that imidacloprid and thiacloprid could act as modulators of the cockroach Pameα7 receptors.  相似文献   

7.
Fritillaria bulbs are used in Traditional Chinese Medicine to treat several illnesses. Peimine (Pm), an anti-inflammatory compound from Fritillaria, is known to inhibit some voltage-dependent ion channels and muscarinic receptors, but its interaction with ligand-gated ion channels remains unexplored. We have studied if Pm affects nicotinic acetylcholine receptors (nAChRs), since they play broad functional roles, both in the nervous system and non-neuronal tissues. Muscle-type nAChRs were incorporated to Xenopus oocytes and the action of Pm on the membrane currents elicited by ACh (IAChs) was assessed. Functional studies were combined with virtual docking and molecular dynamics assays. Co-application of ACh and Pm reversibly blocked IACh, with an IC50 in the low micromolar range. Pm inhibited nAChR by: (i) open-channel blockade, evidenced by the voltage-dependent inhibition of IAch, (ii) enhancement of nAChR desensitization, revealed by both an accelerated IACh decay and a decelerated IACh deactivation, and (iii) resting-nAChR blockade, deduced from the IACh inhibition elicited by Pm when applied before ACh superfusion. In good concordance, virtual docking and molecular dynamics assays demonstrated that Pm binds to different sites at the nAChR, mostly at the transmembrane domain. Thus, Pm from Fritillaria bulbs, considered therapeutic herbs, targets nAChRs with high affinity, which might account for its anti-inflammatory actions.  相似文献   

8.
Current treatments of Alzheimer's disease include the allosteric potentiation of nicotinic acetylcholine receptor (nAChR) response. The location of the binding site for allosteric potentiating ligands (APLs) within the receptor is not yet fully understood. Based on homology models for the ligand binding domain of human α7, human α4β2, and chicken α7 receptors, as well as blind docking experiments with galanthamine, physostigmine, codeine, and 5HT, we identified T197 as an essential element of the APL binding site at the outer surface of the ligand binding domain (LBD) of nAChR. We also found the previously known galanthamine binding site in the region of K123 at the inside of the receptor funnel, which, however, was shown to not be part of the APL site. Our results are verified by site‐directed mutagenesis and electrophysiological experiments, and suggest that APL and ACh bind to different sites on nicotinic receptors and that allosteric potentiation may arise from a direct interplay between both these sites.  相似文献   

9.
CHRFAM7A is a relatively recent and exclusively human gene arising from the partial duplication of exons 5 to 10 of the α7 neuronal nicotinic acetylcholine receptor subunit (α7 nAChR) encoding gene, CHRNA7. CHRNA7 is related to several disorders that involve cognitive deficits, including neuropsychiatric, neurodegenerative, and inflammatory disorders. In extra-neuronal tissues, α7nAChR plays an important role in proliferation, differentiation, migration, adhesion, cell contact, apoptosis, angiogenesis, and tumor progression, as well as in the modulation of the inflammatory response through the “cholinergic anti-inflammatory pathway”. CHRFAM7A translates the dupα7 protein in a multitude of cell lines and heterologous systems, while maintaining processing and trafficking that are very similar to the full-length form. It does not form functional ion channel receptors alone. In the presence of CHRNA7 gene products, dupα7 can assemble and form heteromeric receptors that, in order to be functional, should include at least two α7 subunits to form the agonist binding site. When incorporated into the receptor, in vitro and in vivo data showed that dupα7 negatively modulated α7 activity, probably due to a reduction in the number of ACh binding sites. Very recent data in the literature report that the presence of the duplicated gene may be responsible for the translational gap in several human diseases. Here, we will review the studies that have been conducted on CHRFAM7A in different pathologies, with the intent of providing evidence regarding when and how the expression of this duplicated gene may be beneficial or detrimental in the pathogenesis, and eventually in the therapeutic response, to CHRNA7-related neurological and non-neurological diseases.  相似文献   

10.
Alpha7 nicotinic acetylcholine receptor (α7 nAChR) is an important part of the cholinergic nerve system in the brain. Moreover, it is associated with a cholinergic anti-inflammatory pathway in the termination of the parasympathetic nervous system. Antagonists of α7 nAChR are a wide group represented by conotoxin and bungarotoxin. Even Alzheimer's disease drug memantine acting as an antagonist in its side pathway belongs in this group. Agonists of α7 nAChR are suitable for treatment of multiple cognitive dysfunctions such as Alzheimer's disease or schizophrenia. Inflammation or even sepsis can be ameliorated by the agonistic acting compounds. Preparations RG3487, SEN34625/WYE-103914, SEN12333, ABT-107, Clozapine, GTS-21, CNI-1493, and AR-R17779 are representative examples of the novel compounds with affinity toward the α7 nAChR. Pharmacological, toxicological, and medicinal significance of α7 nAChR are discussed throughout this paper.  相似文献   

11.
The "one-bead-one-compound" (OBOC) combinatorial library method synthesizes millions of random compounds such that each bead displays only one compound. Bead libraries are screened, and positive beads are isolated for structure analysis. Peptide substrates and inhibitors of protein kinases, and peptide ligands for cell surface receptors have been identified using this method. A novel encoding strategy for OBOC libraries has been developed to identify peptidomimetic and small-molecule ligands that specifically interact with cellular proteins. These ligands will be tested for their effects on cell signaling and used to construct chemical microarrays for further characterization of ligand-protein interactions.  相似文献   

12.
A novel series of 30 symmetric bispyridinium and related N‐heteroaromatic bisquaternary salts with a propane‐1,3‐diyl linker was synthesized and characterized for their binding affinity at the MB327 binding site of nicotinic acetylcholine receptor (nAChR) from Torpedo californica. Compounds targeting this binding site are of particular interest for research into new antidotes against organophosphate poisoning, as therapeutically active 4‐tert‐butyl‐substituted bispyridinium salt MB327 was previously identified as a nAChR re‐sensitizer. Efficient access to the target compounds was provided by newly developed methods enabling N‐alkylation of sterically hindered or electronically deactivated heterocycles exhibiting a wide variety of functional groups. Determination of binding affinities toward the MB327 binding site at the nAChR, using a recently developed mass spectrometry (MS)‐based Binding Assay, revealed that several compounds reached affinities similar to that of MB327 (pKi=4.73±0.03). Notably, the newly prepared lipophilic 4‐tert‐butyl‐3‐phenyl‐substituted bispyridinium salt PTM0022 ( 3 h ) was found to have significantly higher binding affinity, with a pKi value of 5.16±0.07, thus representing considerable progress toward the development of more potent nAChR re‐sensitizers.  相似文献   

13.
AMOP‐H‐OH (sazetidine‐A; 6‐[5‐(azetidin‐2‐ylmethoxy)pyridin‐3‐yl]hex‐5‐yn‐1‐ol) and some sulfur‐bearing analogues were tested for their activities in vitro against human α4β2‐, α4β4‐, α3β4*‐ and α1*‐nicotinic acetylcholine receptors (nAChRs). AMOP‐H‐OH was also assessed in an antidepressant efficacy model. AMOP‐H‐OH and some of its analogues have high potency and selectivity for α4β2‐nAChRs over other nAChR subtypes. Effects are manifested as partial agonism, perhaps reflecting selectivity for high sensitivity (α4)3(β2)2‐nAChRs. More prolonged exposure to AMOP‐H‐OH and its analogues produces inhibition of subsequent responses to acute challenges with full nicotinic agonists, again selectively for α4β2‐nAChRs over other nAChR subtypes. The inhibition is mediated either via antagonism or desensitization of nAChR function, but the degree of inhibition of α4β2‐nAChRs is limited by the partial agonist activity of the drugs. Certain aspects of the in vitro pharmacology suggest that AMOP‐H‐OH and some of its analogues have a set of binding sites on α4β2‐nAChRs that are distinct from those for full agonists. The in vitro pharmacological profile suggests that peripheral side effects of AMOP‐H‐OH or its analogues would be minimal and that their behavioral effects would be dominated by central nAChR actions. AMOP‐H‐OH also has profound and high potency antidepressant‐like effects in the forced swim test. The net action of prolonged exposure to AMOP‐H‐OH or its analogues, as for nicotine, seems to be a selective decrease in α4β2‐nAChR function. Inactivation of nAChRs may be a common neurochemical endpoint for nicotine dependence, its treatment, and some of its manifestations, including relief from depression.  相似文献   

14.
The dendritic cell-specific intercellular adhesion molecule (ICAM) 3-grabbing nonintegrin (DC-SIGN) is a C-type lectin that appears to perform several different functions. Besides mediating adhesion between dendritic cells and T lymphocytes, DC-SIGN recognizes several pathogens some of which, including HIV, appear to exploit it to invade host organisms. The intriguing diversity of the roles attributed to DC-SIGN and their therapeutic implications have stimulated the search for new ligands that could be used as biological probes and possibly as lead compounds for drug development. The natural ligands of DC-SIGN consist of mannose oligosaccharides or fucose-containing Lewis-type determinants. Using the known 3D structure of the Lewis-x trisaccharide, we have identified some monovalent alpha-fucosylamides that bind to DC-SIGN with inhibitory constants 0.4-0.5 mM, as determined by SPR, and have characterized their interaction with the protein by STD NMR spectroscopy. This work establishes for the first time alpha-fucosylamides as functional mimics of chemically and enzymatically unstable alpha-fucosides and describes interesting candidates for the preparation of multivalent systems able to block the receptor DC-SIGN with high affinity and with potential biomedical applications.  相似文献   

15.
The inhibition of integrin function is a major challenge in medicinal chemistry. Potent ligands are currently in different stages of clinical trials for the antiangiogenic therapy of cancer and age-related macula degeneration (AMD). The subtype alpha5beta1 has recently been drawn into the focus of research because of its genuine role in angiogenesis. In our previous work we could demonstrate that the lack of structural information about the receptor could be overcome by a homology model based on the X-ray structure of the alphavbeta3 integrin subtype and the sequence similarities between both receptors. In this work, we describe the rational design and synthesis of high affinity alpha5beta1 binders, and the optimisation of selectivity against alphavbeta3 by means of extensive SAR studies and docking experiments. A first series of compounds based on the tyrosine scaffold resulted in affinities in the low and even subnanomolar range and selectivities of 400-fold against alphavbeta3. The insights about the structure-activity relationship gained from tyrosine-based ligands could be successfully transferred to ligands that bear an aza-glycine scaffold to yield alpha5beta1 ligands with affinities of approximately 1 nm and selectivities that exceed 10(4)-fold. The ligands have already been successfully employed as selective alpha5beta1 ligands in biological research and might serve as lead structures for antiangiogenic cancer therapy.  相似文献   

16.
Acetylcholine (ACh) is the principal vestibular efferent neurotransmitter among mammalians. Pharmacologic studies prove that ACh activates a small conductance Ca2+-activated K+ channels (KCa) current (SK2), mediated by α9-containing nicotinic ACh receptor (α9nAChR) in mammalian type II vestibular hair cells (VHCs II). However, our studies demonstrate that the m2 muscarinic ACh receptor (m2mAChR) mediates a big conductance KCa current (BK) in VHCs II. To better elucidate the correlation between these two distinct channels in VHCs II of guinea pig, this study was designed to verify whether these two channels and their corresponding AChR subtypes co-exist in the same VHCs II by whole-cell patch clamp recordings. We found that m2mAChR sensitive BK currents were activated in VHCs II isolated by collagenase IA, while α9nAChR sensitive SK2 currents were activated in VHCs II isolated by trypsin. Interestingly, after exposing the patched cells isolated by trypsin to collagenase IA for 3 min, the α9nAChR sensitive SK2 current was abolished, while m2mAChR-sensitive BK current was activated. Therefore, our findings provide evidence that the two distinct channels and their corresponding AChR subtypes may co-exist in the same VHCs II, and the alternative presence of these two ACh receptors-sensitive currents depended on isolating preparation with different enzymes.  相似文献   

17.
α‐Conotoxin MII (α‐CTxMII) is a 16‐residue peptide with the sequence GCCSNPVCHLEHSNLC, containing Cys2–Cys8 and Cys3–Cys16 disulfide bonds. This peptide, isolated from the venom of the marine cone snail Conus magus, is a potent and selective antagonist of neuronal nicotinic acetylcholine receptors (nAChRs). To evaluate the impact of channel–ligand interactions on ligand‐binding affinity, homology models of the heteropentameric α3β2‐nAChR were constructed. The models were created in MODELLER with the aid of experimentally characterized structures of the Torpedo marmorata‐nAChR (Tm‐nAChR, PDB ID: 2BG9) and the Aplysia californica‐acetylcholine binding protein (Ac‐AChBP, PDB ID: 2BR8) as templates for the α3‐ and β2‐subunit isoforms derived from rat neuronal nAChR primary amino acid sequences. Molecular docking calculations were performed with AutoDock to evaluate interactions of the heteropentameric nAChR homology models with the ligands acetylcholine (ACh) and α‐CTxMII. The nAChR homology models described here bind ACh with binding energies commensurate with those of previously reported systems, and identify critical interactions that facilitate both ACh and α‐CTxMII ligand binding. The docking calculations revealed an increased binding affinity of the α3β2‐nAChR for α‐CTxMII with ACh bound to the receptor, and this was confirmed through two‐electrode voltage clamp experiments on oocytes from Xenopus laevis. These findings provide insights into the inhibition and mechanism of electrostatically driven antagonist properties of the α‐CTxMIIs on nAChRs.  相似文献   

18.
Cu(II) complexes with N‐(thiazol‐2‐yl)methacrylamide (NTM) and its polymer PNTM have been synthesized. The ligands (NTM and PNTM) and their Cu(II) complexes have been characterized by FTIR and 1H‐NMR. EDX was performed to know the elemental composition and X‐ray powder diffractometry (XRD) analysis was applied to detect the crystallinity of the complexes. The morphology of these complexes was investigated with scanning electron microscopy (SEM) and proves that the monomer complexes have a strongly crystalline structure compared with the polymer complexes, which show that it is only weakly crystalline. These results from SEM are in agreement with results obtained from XRD. Thermal properties of the ligands and their complexes have been studied by thermogravimetric analysis and differential scanning calorimetry. The activity of the ligands and their complexes has been screened against S. aureus, E. coli, Pseudomonas, and Candida albicans. The synthesized compounds have shown good affinity as antibacterial and antifungal agents, which increased on complexation with Cu(II) ion. The results of these studies show the Cu(II) complexes to be more thermal stable as compared with NTM and PNTM. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
We have synthesized a series of fluorescent acylcholine derivatives carrying different linkers that vary in length and structure and connect the acylcholine unit to the environment-sensitive fluorophores 7-(diethylamino)coumarin-3-carbonyl (DEAC) or N-(7-nitrobenz-2-oxa-1,3-diazol-yl) (NBD). The pharmacological properties of the fluorescent analogues were investigated on heterologously expressed nicotinic acetylcholine receptor (nAChR) from Torpedo californica and on oocytes transplanted with nAChR-rich Torpedo marmorata membranes. Agonist action strongly depends on the length and the structure of the linker. One particular analogue, DEAC-Gly-C6-choline, showed partial agonist behavior with about half of the maximum response of acetylcholine, which is at least 20 times higher than those observed with previously described fluorescent dansyl- and NBD-acylcholine analogues. Binding of DEAC-Gly-C6-choline to Torpedo nAChR induces a strong enhancement of fluorescence intensity. Association and displacement kinetic experiments revealed dissociation constants of 0.5 nM for the alphadelta-binding site and 15.0 nM for the alphagamma-binding site. Both the pharmacological and the spectroscopic properties of this agonist show great promise for characterizing the allosteric mechanism behind the function of the Torpedo nAChR, as well as for drug-screening studies.  相似文献   

20.
All nervous system pathologies (e.g., neurodegenerative/demyelinating diseases and brain tumours) develop neuroinflammation, a beneficial process during pathological events, aimed at removing damaged cells, toxic agents, and/or pathogens. Unfortunately, excessive inflammation frequently occurs during nervous system disorders, becoming a detrimental event capable of enhancing neurons and myelinating glial cell impairment, rather than improving their survival and activity. Consequently, targeting the neuroinflammation could be relevant for reducing brain injury and rescuing neuronal and glial cell functions. Several studies have highlighted the role of acetylcholine and its receptors in the regulation of central and peripheral inflammation. In particular, α7 nicotinic receptor has been described as one of the main regulators of the “brain cholinergic anti-inflammatory pathway”. Its expression in astrocytes and microglial cells and the ability to modulate anti-inflammatory cytokines make this receptor a new interesting therapeutic target for neuroinflammation regulation. In this review, we summarize the distribution and physiological functions of the α7 nicotinic receptor in glial cells (astrocytes and microglia) and its role in the modulation of neuroinflammation. Moreover, we explore how its altered expression and function contribute to the development of different neurological pathologies and exacerbate neuroinflammatory processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号