共查询到20条相似文献,搜索用时 9 毫秒
1.
Shuji Fujisawa Kazuho Daicho Ayhan Yurtsever Takeshi Fukuma Tsuguyuki Saito 《Small (Weinheim an der Bergstrasse, Germany)》2023,19(30):2302276
Nanocellulose is attracting attention in the field of materials science as a sustainable building block. Nanocellulose-based materials, such as films, membranes, and foams, are fabricated by drying colloidal dispersions. However, little is known about how the structure of a single nanocellulose changes during the complex drying process. Here, all-atom molecular dynamics simulations and atomic force microscopy is used to investigate the structural dynamics of single nanocellulose during drying. It is found that the twist morphology of the nanocellulose became localized along the fibril axis during the final stage of the drying process. Moreover, it is shown that conformational changes at C6 hydroxymethyl groups and glycoside bond is accompanied by the twist localization, indicating that the increase in the crystallinity occurred in the process. It is expected that the results will provide molecular insights into nanocellulose structures in material processing, which is helpful for the design of materials with advanced functionalities. 相似文献
2.
3.
4.
5.
Dip‐pen nanolithography (DPN) is a powerful method to pattern nanostructures on surfaces by the controlled delivery of an “ink” coating the tip of an atomic force microscope upon scanning and contacting with surfaces. The growing interest in the use of nanoparticles as structural and functional elements for the fabrication of nanodevices suggests that the DPN‐stimulated patterning of nanoparticles on surfaces might be a useful technique to assemble hierarchical architectures of nanoparticles that could pave methodologies for functional nanocircuits or nanodevices. This Review presents different methodologies for the nanolithographic patterning of metallic, semiconductor, and metal oxide nanostructures on surfaces. The mechanisms involved in the formation of the nanostructures are discussed and the effects that control the dimensions of the resulting patterns are reviewed. The possible applications of the nanostructures are also addressed.
6.
Chia‐Wei Lee Ya‐Ling Chiang Ji‐Ting Liu Yi‐Xian Chen Chau‐Hwang Lee Yeng‐Long Chen Ing‐Shouh Hwang 《Small (Weinheim an der Bergstrasse, Germany)》2018,14(40)
Recent studies indicate that changing the physical properties of lipid bilayers may profoundly change the function of membrane proteins. Here, the effects of dissolved nitrogen and oxygen molecules on the mechanical properties and stability of lipid bilayers are investigated using differential confocal microscopy, atomic force microscopy, and molecular dynamics simulations. All experiments evidence the presence of dissolved air gas in lipid bilayers prepared without gas control. The lipid bilayers in degassed solutions are softer and less stable than those in ambient solutions. High concentrations of nitrogen increase the bending moduli and stability of the lipid bilayers and impede phase separation in ternary lipid bilayers. The effect of oxygen is less prominent. Molecular dynamics simulations indicate that higher nitrogen affinity accounts for increased rigidity. These findings have fundamental and wide implications for phenomena related to lipid bilayers and cell membranes, including the origin of life. 相似文献
7.
The elastic response of molecular organic materials to external mechanical nanoindentations in the nano- and low micronewton
force range can be characterized using ultrasharp cantilever tips of an Atomic Force Microscope (AFM). Because clear distinction
between elastic and plastic deformation is achieved, the maximal accumulated elastic energy can be directly determined from
the force vs. penetration curves, giving an estimate of the characteristic energies of the materials. 相似文献
8.
9.
Peter W. Chung 《International journal for numerical methods in engineering》2004,60(4):833-859
The development of an approximation method that rigorously averages small‐scale atomistic physics and embeds them in large‐scale mechanics is the principal aim of this work. This paper presents a general computational procedure based on homogenization to average frozen nanoscale atomistics and couple them to the equations of continuum hyperelasticity. The proposed application is to nanopatterned systems in which complex atomic configurations are organized in a repeating periodic array. The finite element method is used to solve the equations at the large scale, but the small‐scale equation is representative of lattice‐statics. The method is predicated on a quasistatic zero‐temperature assumption and, through homogenization, leads to a coupled set of variational equations. The numerical procedure is presented in detail, and 2‐D examples of ultra thin film layers of carbon one atom thick are shown to illustrate its applicability. Homogenization naturally gives rise to an inner displacement term with which point defects are explicitly modelled and their non‐linear interactions with global states of multiaxial strain are studied. Published in 2004 by John Wiley & Sons, Ltd. 相似文献
10.
11.
12.
13.
A. Gelmi M. J. Higgins G. G. Wallace 《Small (Weinheim an der Bergstrasse, Germany)》2013,9(3):393-401
Polymer‐based electrodes for interfacing biological tissues are becoming increasingly sophisticated. Their many functions place them at the cross‐roads of electromaterials, biomaterials, and drug‐delivery systems. For conducting polymers, the mechanism of conductivity requires doping with anionic molecules such as extracellular matrix molecules, a process that distinguishes them as biomaterials and provides a means to control interactions at the cellular–electrode interface. However, due to their complex structure, directly observing the selective binding of target molecules or proteins has so far eluded researchers. This situation is compounded by the polymer's ability to adopt different electronic states that alter the polymer–dopant interactions. Here, the ability to resolve sub‐molecular binding specificity between sulfate and carboxyl groups of dopants and heparin binding domains of human plasma fibronectin is demonstrated. The interaction exploits a form of biological ‘charge complementarity’ to enable specificity. When an electrical signal is applied to the polymer, the specific interaction is switched to a non‐specific, high‐affinity binding state that can be reversibly controlled using electrochemical processes. Both the specific and non‐specific interactions are integral for controlling protein conformation and dynamics. These details, which represent the first direct measurement of biomolecular recognition between a single protein and any type of organic conductor, give new molecular insight into controlling cellular interactions on these polymer surfaces. 相似文献
14.
15.
16.
17.
A nanopatterning method to deposit ferritin proteins with nanoscale accuracy over large areas is reported. Selective deposition is driven by the electrostatic interactions existing between the proteins and nanoscale features. Upon deposition, the protein shell can be removed by heating the patterns in an oxygen atmosphere. This leaves exposed the iron oxide core, which can be further reduced in size by plasma-etching methods. In this way, the initial ferritin molecules, which have a nominal size of 12 nm, are reduced to 2 nm nanoparticles. Magnetic force measurements confirm the magnetic activity of the as-deposited and etched nanoparticles. 相似文献
18.
19.
Eva Cortés-del Río Pierre Mallet Héctor González-Herrero José Luis Lado Joaquín Fernández-Rossier José María Gómez-Rodríguez Jean-Yves Veuillen Iván Brihuega 《Advanced materials (Deerfield Beach, Fla.)》2020,32(30):2001119
Quantum confinement of graphene Dirac-like electrons in artificially crafted nanometer structures is a long sought goal that would provide a strategy to selectively tune the electronic properties of graphene, including bandgap opening or quantization of energy levels. However, creating confining structures with nanometer precision in shape, size, and location remains an experimental challenge, both for top-down and bottom-up approaches. Moreover, Klein tunneling, offering an escape route to graphene electrons, limits the efficiency of electrostatic confinement. Here, a scanning tunneling microscope (STM) is used to create graphene nanopatterns, with sub-nanometer precision, by the collective manipulation of a large number of H atoms. Individual graphene nanostructures are built at selected locations, with predetermined orientations and shapes, and with dimensions going all the way from 2 nm up to 1 µm. The method permits the patterns to be erased and rebuilt at will, and it can be implemented on different graphene substrates. STM experiments demonstrate that such graphene nanostructures confine very efficiently graphene Dirac quasiparticles, both in 0D and 1D structures. In graphene quantum dots, perfectly defined energy bandgaps up to 0.8 eV are found that scale as the inverse of the dot’s linear dimension, as expected for massless Dirac fermions. 相似文献
20.
Oliveira H Rangl M Ebner A Mayer B Hinterdorfer P Pêgo AP 《Small (Weinheim an der Bergstrasse, Germany)》2011,7(9):1236-1241
The density of targeting moieties in a nanoparticle-based gene-delivery system has been shown to play a fundamental role in its vectoring performance. Here, molecular recognition force spectroscopy is proposed as a novel screening tool to optimize the density of targeting moieties of functionalized nanoparticles towards attaining cell-specific interaction. By tailoring the nanoparticle formulation, the unbinding event probability between nanoparticles tethered to an atomic force microscopy tip and neuronal cells is directly correlated to the nanoparticle gene-vectoring capacity. Additionally, new insights into protein-receptor interaction are revealed. This novel approach opens new avenues in the field of nanomedicine. 相似文献