首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Advanced oxidation processes were combined with biological treatment processes in this study to remove both pesticides and then the COD load from aqueous solutions. It was found that O(3) and O(3)/UV oxidation systems were able to reach 90 and 100%, removal of the pesticide Deltamethrin, respectively, in a period of 210 min. The use of O(3) combined with UV radiation enhances pesticides degradation and the residual pesticide reaches zero in the case of Deltamethrin. The combined O(3)/UV system can reduce COD up to 20% if the pH of the solution is above 4. Both pesticide degradation and COD removal in the combined O(3)/UV system follow the pseudo-first-order kinetics and the parameters of this model were evaluated. The application of the biological treatment to remove the bulk COD from different types of feed solution was investigated. More than 95% COD removal was achieved when treated wastewater by the O(3)/UV system was fed to the bioreactor. The parameters of the proposed Grau model were estimated.  相似文献   

2.
Fenton oxidation and coagulation-flocculation-sedimentation (CFS) were both effective in removing many organic constituents of the biotreated coking plant effluent before the final treatment in an activated carbon adsorber. Fenton oxidation broke down most persistent organic pollutants and complex cyanides present in the feed stream and caused the eventual biodegradation of the organic residues in the adsorber. The results of Fenton oxidation followed by adsorption and biodegradation in two biological activated carbon (BAC) adsorbers show that the combined treatment consistently produced a high quality final effluent of <50mg/L in COD(Cr) and <0.5mg/L in total cyanide during the 70-d study without replacing any activated carbon. The BAC function of the adsorber substantially reduced the need for replacing activated carbon making the combined Fenton oxidation-BAC treatment process a cost effective treatment process to recycle the final effluent for many beneficial reuses while meeting the much more stringent discharge limits of the future.  相似文献   

3.
A variety of advanced oxidation processes (AOPs; O3/OH-, H2O2/UV, Fe2+/H2O2, Fe3+/H2O2, Fe2+/H2O2/UV and Fe3+/H2O2/UV) have been applied for the oxidative pre-treatment of real penicillin formulation effluent (average COD0 = 1395 mg/L; TOC0 = 920 mg/L; BOD(5,0) approximately 0 mg/L). For the ozonation process the primary involvement of free radical species such as OH* in the oxidative reaction could be demonstrated via inspection of ozone absorption rates. Alkaline ozonation and the photo-Fenton's reagents both appeared to be the most promising AOPs in terms of COD (49-66%) and TOC (42-52%) abatement rates, whereas the BOD5 of the originally non-biodegradable effluent could only be improved to a value of 100 mg/L with O3/pH = 3] treatment (BOD5/COD, f = 0.08). Evaluation on COD and TOC removal rates per applied active oxidant (AOx) and oxidant (Ox) on a molar basis revealed that alkaline ozonation and particularly the UV-light assisted Fenton processes enabling good oxidation yields (1-2 mol COD and TOC removal per AOx and Ox) by far outweighed the other studied AOPs. Separate experimental studies conducted with the penicillin active substance amoxicillin trihydrate indicated that the aqueous antibiotic substance can be completely eliminated after 40 min advanced oxidation applying photo-Fenton's reagent (pH = 3; Fe(2+):H2O2 molar ratio = 1:20) and alkaline ozonation (at pH = 11.5), respectively.  相似文献   

4.
Ozonation of leather dye effluent for removal of color and COD reduction covering wide range in operating parameters forms the scope of the present work. The influence of parameters such as influent pH, ozone flow rate and initial effluent concentration on ozonation efficiency has been critically examined. It has been observed from the present investigation that a maximum of COD removal efficiency of 92% has been achieved under optimum operating conditions. Further the biodegradability index of the tannery effluent has increased from an initial value of 0.18 to 0.49 during ozonation indicating favorable adaptation of ozonation as a primer to the biochemical technique to enhance the efficiency of biochemical treatment.  相似文献   

5.
The feasibility of the photobleaching of a leather acid dye, acid red 151, simultaneously to degradation of anionic surfactant, Tamol®, and reduction of Cr(VI) to the less toxic Cr(III) was investigated by photoelectrocatalytic oxidation. The best experimental conditions were found to be pH 2.0 and 0.1 mol L−1 sodium sulfate when the nanoporous Ti/TiO2 photo anode was biased at +1.0 V and submitted to UV-irradiation. The photoelectrocatalytic oxidation promotes 100% discoloration, reducing around 98–100% of Cr(VI) and achieving an abatement of 95% of the original total organic carbon. The effect of pH, the applied potential, the Cr(VI) concentration and the complexation reaction between Cr(VI) and acid red dye were evaluated as to their effect on the kinetics of the reaction.  相似文献   

6.
In tanneries microorganisms are able to find environment suitable for their growth. Raw hide of buffalo and other animals like goat that are economically important, are an ideal source of nutrients for bacterial and fungal growth. In the past, preservatives like sodium chloride provided effective protection to fresh hides however the ill effect of their excessive use was not evaluated. But recently concern over potential ecological hazards has become more deliberate and sodium chloride features lot of disadvantages in agriculture as most of the tannery effluent is flown in agricultural fields in India. After rigorous laboratory experimentation on moisture content, SEM of hide, pure sodium sulphate as well as sodium sulphate in addition with sodium chloride (i.e. 10% w/w and 20% w/w) proved as most preferable option for curing of buffalo hide which gives effective preservation. Pollution load studies put forward sodium sulphate as an effective curing agent for buffalo hide to apply at industrial scale also.  相似文献   

7.
A multidisciplinary Road Accident Analysis Group with the objective of conducting in-depth investigations of specific types of accidents has existed in Denmark for some years. The group has analysed head-on collisions, left-turn accidents, truck accidents and single vehicle accidents. The data collection included police reports, the group's investigation of accident sites and vehicles involved, and interviews with the involved road users and witnesses. The main accident factors in the head-on collisions and in the single vehicle accidents were excessive speed, drunk driving and driving under the influence of illegal drugs. The primary accident factors in left-turn accidents were attention errors or misjudging the amount of time available to complete the left turn. In the truck accidents insufficient searching for visual information as well as speeding were major factors. For all the accident themes the primary injury factor was failure to wear seat- belts. The multidisciplinary approach has provided a rather precise knowledge of the contributing factors leading up to the accident. The method requires a lot of resources, which is a limiting factor for the number of accidents to be analysed in this way. However, the method is suitable for analysis of common occurring or very serious types of accidents.  相似文献   

8.
Pulp mill effluent containing toxic chemicals was treated by different advanced oxidation processes (AOPs) consisting of treatments by hydrogen peroxide, Fenton's reagent (H2O2/Fe2+), UV, UV/H2O2, photo-Fenton (UV/H2O2/Fe2+), ozonation and peroxone (ozone/H2O2) in laboratory-scale reactors for color, total organic carbon (TOC) and adsorbable organic halogens (AOX) removals from the pulp mill effluent. Effects of some operating parameters such as the initial pH, oxidant and catalyst concentrations on TOC, color, AOX removals were investigated. Almost every method used resulted in some degree of color removal from the pulp mill effluent. However, the Fenton's reagent utilizing H2O2/Fe2+ resulted in the highest color, TOC and AOX removals under acidic conditions when compared with the other AOPs tested. Approximately, 88% TOC, 85% color and 89% AOX removals were obtained by the Fenton's reagent at pH 5 within 30 min. Photo-Fenton process yielded comparable TOC (85%), color (82%) and AOX (93%) removals within 5 min due to oxidations by UV light in addition to the Fenton's reagent. Fast oxidation reactions by the photo-Fenton treatment makes this approach more favorable as compared to the others used.  相似文献   

9.
A two stage sequential Fenton's oxidation followed by aerobic biological treatment train was used to achieve decolorization and to enhance mineralization of azo dyes, viz. Reactive Black 5 (RB5), Reactive Blue 13 (RB13), and Acid Orange 7 (AO7). In the first stage, Fenton's oxidation process was used while in the second stage aerobic sequential batch reactors (SBRs) were used as biological process. Study was done to evaluate effect of pH on Fenton's oxidation process. Results reveal that pH 3 was optimum pH for achieving decolorization and dearomatization of dyes by Fenton's process. Degradation of dye was assessed by COD reduction and reduction in aromatic amines (naphthalene chromophores) which was measured by reduction in absorbance at 200 nm. More than 95% of color was removed with Fenton's oxidation process in all dyes. In overall treatment train 81.95, 85.57, and 77.83% of COD reduction was achieved in RB5, RB13, and AO7 dyes, respectively. In the Fenton's oxidation process 56, 24.5, and 80% reduction in naphthalene group was observed in RB5, RB13, and AO7, respectively, which further increased to 81.34, 68.73, and 92% after aerobic treatment. Fenton's oxidation process followed by aerobic SBRs treatment sequence seems to be viable method for achieving significant degradation of azo dye.  相似文献   

10.
Electrochemical treatment of tannery wastewater using DSA electrodes   总被引:2,自引:0,他引:2  
In this work we studied the electrochemical treatment of a tannery wastewater using dimensionally stable anodes (DSA) containing tin, iridium, ruthenium, and titanium. The electrodes were prepared by thermal decomposition of the polymeric precursors. The electrolyses were performed under galvanostatic conditions, at room temperature. Effects of the oxide composition, current density, and effluent conductivity were investigated, and the current efficiency was calculated as a function of the time for the performed electrolyses. Results showed that all the studied electrodes led to a decrease in the content of both total phenolic compounds and total organic carbon (TOC), as well as lower absorbance in the UV-vis region. Toxicity tests using Daphnia similis demonstrated that the electrochemical treatment reduced the wastewater toxicity. The use of DSA type electrodes in the electrochemical treatment of tannery wastewater proved to be useful since it can promote a decrease in total phenolic compounds, TOC, absorbance, and toxicity.  相似文献   

11.
The present study is to investigate the treatment of a surfactant wastewater containing abundant sulfate by Fenton oxidation and aerobic biological processes. The operating conditions have been optimized. Working at an initial pH value of 8, a Fe2+ dosage of 600mgL(-1) and a H2O2 dosage of 120mgL(-1), the chemical oxidation demand (COD) and linear alkylbenzene sulfonate (LAS) were decreased from 1500 and 490mgL(-1) to 230 and 23mgL(-1) after 40min of Fenton oxidation, respectively. Advanced oxidation pretreatment using Fenton reagent was very effective at enhancing the biodegradability of this kind of wastewater. The wastewater was further treated by a bio-chemical treatment process based on an immobilized biomass reactor with a hydraulic detention time (HRT) of 20h after Fenton oxidation pretreatment under the optimal operating conditions. It was found that the COD and LAS of the final effluent were less than 100 and 5mgL(-1), corresponding to a removal efficiencies of over 94% and 99%, respectively.  相似文献   

12.
In this study, effluent from the biological treatment of wastewater from a resin-producing factory containing recalcitrant compounds was ozonated under different conditions. Afterwards, the biodegradability of the ozonated effluent was studied under anoxic conditions. The post-ozonation of the industrial effluent was performed using a wide range of ozone doses, from 1.8 to 29.5 mg L(-1)min(-1). After the biological treatment of the ozonated effluent, organic carbon and nitrogen removals from 27 to 97% and from 27 to 80%, respectively, were achieved. The effect of the contact time was studied at a constant ozone dose of 13.0+/-1.2 mg L(-1)min(-1) and contact times ranging from 30 to 180 min. In this case, organic carbon removals from 55 to 100% and organic nitrogen removals from 41 to 77% were obtained after biological treatment.  相似文献   

13.
Bacterial growth on mixed substrates is employed for wastewater treatment. Biodegradation kinetics of Pseudomonas putida CECT 324 growth on formic acid, vanillin, phenol and oxalic acid mixtures is described. The experiments were carried out in a stirred-tank fermentor in batch mode at different temperatures (25, 30 and 35 degrees C) and pH (5, 6 and 7). The four compounds selected are typical intermediates in pesticide-contaminated water treated by advanced oxidation processes (AOPs). The toxicity of intermediates was investigated for a combined AOP-biological treatment, and the minimum DOC inhibitory concentration of the intermediate mixture was 175 ppm. The resulting biodegradation and growth kinetics were best described by the sum kinetics with interaction parameters (SKIP) model. Phenol and oxalic acid inhibit P. putida growth, and formic acid consumption strongly affects the biodegradation of oxalic acid. At all the temperatures tested and at pH between 5 and 7, P. putida CECT 324 was able to degrade the four substrates after culture times of 30 h at 30 degrees C and pH 7, which were the best conditions, and after 70 h, under the worst, at 35 degrees C.  相似文献   

14.
Electrochemical treatment of organic pollutants is a promising treatment technique for substances which are recalcitrant to biodegradation. Experiments were carried out to treat acid violet 12 dye house effluent using electrochemical technique for removal color and COD reduction covering wide range in operating conditions. Ruthenium/lead/tin oxide coated titanium and stainless steel were used as anode and cathode, respectively. The influence of effluent initial concentration, pH, supporting electrolyte and the electrode material on rate of degradation has been critically examined. The results indicate that the electrochemical method can be used to treat dye house effluents.  相似文献   

15.
16.
The application of advanced oxidation processes (H(2)O(2)/UV, TiO(2)/H(2)O(2)/UV and TiO(2)/UV) to treat tannery wastewater was investigated. The experiments were performed in batch and continuous UV reactors, using TiO(2) as a catalyst. The effect of the hydrogen peroxide concentration on the degradation kinetics was evaluated in the concentration range 0-1800 mg L(-1). We observed that the degradation rate increased as the hydrogen peroxide increased, but excessive H(2)O(2) concentration was detrimental because it acted as a hydroxyl radical scavenger since it can compete for the active sites of the TiO(2). In the H(2)O(2)/UV treatment, the COD removal reached around 60% in 4 h of reaction, indicating that the principal pollutants were chemically degraded as demonstrated by the results for BOD, COD, nitrate, ammonium and analysis of the absorbance at 254 nm. Artemia salina toxicity testing performed in parallel showed an increase in toxicity after AOP treatment of the tannery wastewater.  相似文献   

17.
The role that tannins play in tannery wastewater treatment has been evaluated employing a pilot Membrane Bioreactor (MBR) plant and a full scale Conventional Activated Sludge Process (CASP) plant conducted in parallel. The proposed methodology has established the preliminary use of respirometry to examine the biodegradability of a selection of commercial products (synthetic and natural tannins); the subsequent analysis, by means of spectrophotometric reading and RP-IPC (Reverse-Phase Ion-Pair) liquid chromatography, estimates the concentrations of natural tannins and naphthalenesulfonic tanning agents in the influent and effluent samples. The results show that a consistent percentage of the Total Organic Carbon (TOC) in the effluent of the biological phase of the plants is attributable to the presence of natural and synthetic (Sulfonated Naphthalene-Formaldehyde Condensates, SNFC) tannins (17% and 14% respectively). The titrimetric tests that were aimed at evaluating the levels of inhibition on the nitrifying biomass samples did not allow a direct inhibiting effect to be associated with the concentration levels of the tannin in the effluent. Nonetheless, the reduced specific growth rates of ammonium and nitrite oxidising bacteria imply that a strong environmental pressure is present, if not necessarily due to the concentration of tannins, due to the wastewater as a whole. The differences that have emerged by comparing the two technologies (CASP and MBR), in regards to the role that tannins play in terms of biodegradability, did not appear to be significant.  相似文献   

18.
Removal of low levels of organic pollutants can be quite challenging to many water treatment processes. Ketones, such as acetone, are often found in groundwaters and wastewaters at levels too low for supporting a bioreactor, yet since acetone is so soluble, it does not adsorb onto activated carbon very well, nor does it volatilize from water influent using air stripping. This study was undertaken to evaluate three advanced oxidation processes for their comparative ability to remove acetone from aqueous media. Optimization of the oxidation processes was attempted via adjustments of oxidizer inputs. The results indicated that all of the AOPs tested showed promise for removing acetone from water; however, ozonated systems undergoing UV photolysis achieved the highest rate and extent of treatment observed.  相似文献   

19.
20.
Clean Technologies and Environmental Policy - The expansion of shale gas production requires characterization and correct management of the residues generated by the activity, due to their high...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号