首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In cold-chamber high-pressure die castings (HPDC), the microstructure consists of coarse externally solidified crystals (ESCs) that are commonly observed in the central region of cross sections. In the present work, controlled laboratory scale casting experiments have been conducted with particular emphasis on the flow and solidification conditions. An A356 aluminum alloy was used to produce castings by pouring semi-solid metal through a steel die. Microstructures similar to those encountered in HPDC have been produced and the resulting microstructure is found to depend on the melt and die temperature: (1) the fraction of ESCs determines the extent of migration to the central region; (2) a maximum packing determines the area fraction of ESCs in the center; and (3) the die temperature affects the position of the ESCs—a higher die temperature can induce a displaced ESC distribution. It is found that the migration of crystals to the central region requires a flow, which is constrained at all melt/die interfaces. Furthermore, potential lift mechanisms are discussed. An assessment of the Saffman lift force on individual particles shows it has no significant effect on the migration of ESCs.  相似文献   

2.
3.
Detailed investigations of the salient microstructural features and casting defects of the high-pressure die-cast (HPDC) AlSi9Cu3(Fe) alloy are reported. These characteristics are addressed to the mechanical properties and reliability of separate HPDC tensile bars. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes throughout the tensile specimen. The results indicate that the die-cast microstructure consists of several microstructural heterogeneities such as positive eutectic segregation bands, externally solidified crystals (ESCs), cold flakes, primary Fe-rich intermetallics (sludge), and porosities. In addition, it results that sludge particles, gas porosity, as well as ESCs, and cold flakes are concentrated toward the casting center while low porosity and fine-grained structure is observed on the surface layer of the castings bars. The local variation of the hardness along the cross section as well as the change of tensile test results as a function of gage diameter of the tensile bars seem to be ascribed to the change of porosity content, eutectic fraction, and amount of sludge. Further, this behavior reflects upon the reliability of the die-cast alloy, as evidenced by the Weibull statistics.  相似文献   

4.
Banded defects are often found in high-pressure die castings. These bands can contain segregation, porosity, and/or tears, and changing casting conditions and alloy are known to change the position and make-up of the bands. Due to the complex, dynamic nature of the high-pressure die-casting (HPDC) process, it is very difficult to study the effect of individual parameters on band formation. In the work presented here, bands of segregation similar to those found in cold-chamber HPDC aluminum alloys were found in laboratory gravity die castings. Samples were cast with a range of fraction solids from 0 to 0.3 and the effect of die temperature and external solid fraction on segregation bands was investigated. The results are considered with reference to the rheological properties of the filling semisolid metal and a formation mechanism for bands is proposed by considering flow past a solidifying immobile wall layer.  相似文献   

5.
In order to optimise the high pressure die casting (HPDC) process, more understanding of microstructure and defect formation is essential. This article gives an overview of the key microstructural features and the mechanisms of microstructure formation in this process. The incavity solidified grain size in HPDC can be as low as 10 μm, but externally solidified crystals (ESCs) as large as 200 μm are often also present. The eutectic microstructure is very fine with an interlamellar spacing around 500 nm. Bands of positive macrosegregation and sometimes with cracks/porosity, so-called defect bands, are also often observed. Intensification pressure (IP) is one of the major factors governing the porosity level in the casting. At high IP, defect bands form in the gate region and appear to be assisting the feeding during the intensification stage.  相似文献   

6.
7.
Die soldering is one of the major casting defects during the high-pressure die casting (HPDC) process, causing dimensional inaccuracy of the castings and increased downtimes of the HPDC machine. In this study, we analyzed actually failed core pins to determine the mechanism of soldering and its procedures. The results show that the soldering process starts from a local coating failure, involves a series of intermetallic phase formation from reactions between molten aluminum alloys and the H13 steel pin, and accelerates when an aluminum-rich, face-centered cubic (fcc) phase is formed between the intermetallic phases. It is the formation of the aluminum-rich fcc phase in the reaction region that joins the core pin with the casting, resulting in the sticking of the casting to the core pin. When undercuts are formed on the core pin, the ejection of castings from the die will lead to either a core pin failure or damages to the casting being ejected.  相似文献   

8.
Cooling slope (CS) has been used in this study to prepare semi-solid slurry of A356 Al alloy, keeping in view of slurry generation on demand for Rheo-pressure die casting process. Understanding the physics of microstructure evolution during cooling slope slurry formation is important to satisfy the need of semi-sold slurry with desired shape, size and morphology of primary Al phase. Mixture of spherical and rosette shaped primary Al phase has been observed in the samples collected during melt flow through the slope as well as in the cast (mould) samples compared to that of dendritic shape, observed in case of conventionally cast A356 alloy. The liquid melt has been poured into the slope at 650?°C temperature and during flow it falls below the liquidus temperature of the said alloy, which facilitates crystallization of ??-Al crystals on the cooling slope wall. Crystal separation due to melt flow is found responsible for nearly spherical morphology of the primary Al phase.  相似文献   

9.
Squeeze casting of magnesium alloys potentially can be used in lightweight chassis components such as control arms and knuckles. This study documents the microstructural analysis and corrosion behavior of AM50 alloys squeeze cast at different pressures between 40 and 120 MPa and compares them with high-pressure die cast (HPDC) AM50 alloy castings and an AM50 squeeze cast prototype control arm. Although the corrosion rates of the squeeze cast samples are slightly higher than those observed for the HPDC AM50 alloy, the former does produce virtually porosity-free castings that are required for structural applications like control arms and wheels. This outcome is extremely encouraging as it provides an opportunity for additional alloy and process development by squeeze casting that has remained relatively unexplored for magnesium alloys compared with aluminum. Among the microstructural parameters analyzed, it seems that the β-phase interfacial area, indicating a greater degree of β network, leads to a lower corrosion rate. Weight loss was the better method for determining corrosion behavior in these alloys that contain a large fraction of second phase, which can cause perturbations to an overall uniform surface corrosion behavior.  相似文献   

10.
The liquid Mg–Zn–Y alloy was conditioned by an application of high-intensive shearing with a pair of intermesh twin screws prior to high-pressure die casting (HPDC). Melt conditioning produces a uniform microstructure with fine grain size and high integrity. The microstructure was analyzed thoroughly, and the solidification characteristics of the melt-conditioned HPDC (MC-HPDC) structure were discussed. The enhancement in I-phase precipitation and the improvement in mechanical properties of MC-HPDC Mg–Zn–Y alloy can be achieved through cyclic annealing.  相似文献   

11.
Currently, most magnesium lightweight components are fabricated by casting as this process is cost effective and allows forming parts with complex geometries and weak textures. However, cast microstructures are known to be heterogeneous and contain unpredictable porosity distributions, which give rise to a large variability in the mechanical properties. This work constitutes an attempt to correlate the microstructure and the mechanical behavior of a high pressure die cast (HPDC) Mg AZ91 alloy, aimed at facilitating process optimization. We have built a stairway-shaped die to fabricate alloy sections with different thicknesses and, thus, with a range of microstructures. The grain size distributions and the content of β-phase (Mg17Al12) were characterized by optical and electron microscopy techniques as well as by electron backscatter diffraction (EBSD). The bulk porosity distribution was measured by 3D computed X-ray microtomography. It was found that the through-thickness microhardness distribution is mostly related to the local area fraction of the β-phase and to the local area fraction of the pores. We correlate the tensile yield strength to the average pore size and the fracture strength and elongation to the bulk porosity volume fraction. We propose that this empirical approach might be extended to the estimation of mechanical properties in other HPDC Mg alloys.  相似文献   

12.
In this study, effects of thermalrate treatment (TRT) technique on microstructure and mechanical properties of hypoeutectic Al–Si alloys with addition of Ti were studied. The superheating temperatures of the melt were ascertained based on the DSC result. The results show that when the alloy castings in sand mold were treated with TRT technique at the superheating temperature of 930 °C, α-Al changes into smaller equiaxial crystals from coarse dendrites, and hardness of the alloy increases by 12.7 %, compared to that of the alloy treated with conventional casting technique. In addition, the supercooling increases to 8.5 °C and the characteristic temperatures of eutectic solidification are all the lowest with TRT technique at the superheating temperature of 930 °C. As holding time increases at the pouring temperature of 730 °C in TRT at the superheating temperature of 930 °C, the effects on microstructure and mechanical properties of the alloy casting in sand mold decrease. TRT technique plays a limited role in the alloy casting in permanent mold.  相似文献   

13.
This work focuses on understanding the feeding behavior during high-pressure die casting (HPDC). The effects of intensification pressure (IP) and gate thickness on the transport of material through the gate during the latter stages of HPDC were investigated using an AlSi3MgMn alloy. Microstructural characterization of the gate region indicated a marked change in feeding mechanism with increasing IP and gate size. Castings produced with a high IP or thick gate contained a relatively low fraction of total porosity, and shear band-like features existed through the gate, suggesting that semisolid strain localization in the gate is involved in feeding during the pressure intensification stage. When a low IP is combined with a thin gate, no shear band is observed in the gate and feeding is less effective, resulting in a higher level of porosity in the HPDC component. Although shear banding through the gate was found to reduce porosity in HPDC parts, if gates are not properly designed, deformation of the mushy zone through the gate can cause severe macrosegregation, large pores, and large cracks, which could severely reduce the performance of the component.  相似文献   

14.
A one-dimensional transient heat-transfer model coupled with an equation for force balance on particles is developed to predict the particle segregation pattern in a centrifugally cast product, temperature distribution in the casting and the mold, and time for complete solidification. The force balance equation contains a repulsive force term for the particles that are in the vicinity of the solid/liquid interface. The solution of the model equations has been obtained by the pure implicit finite volume technique with modified variable time-step approach. It is seen that for a given set of operating conditions, the thickness of the particle-rich region in the composite decreases with an increase in rotational speed, particle size, relative density difference between particles and melt, initial pouring temperature, and initial mold temperature. With reduced heat-transfer coefficient at the casting/mold interface, the solidification time increases, which, in turn, results in more intense segregation of solid particulates. Again, with increased initial volume fraction of the solid particulates in the melt, both the solidification time and the final thickness of the particulate-rich region increase. It is noted that for Al-Al2O3 and Al-SiC systems, in castings produced using finer particles, lower rotational speeds, and an enhanced heat-transfer coefficient at the casting/mold interface, the volume fraction of particles in the outer layer of the casting remains more or less the same as in the initial melt. However, for castings produced with coarser particles at higher rotational speeds and reduced heat-transfer coefficients at the casting/mold interface, intense segregation is predicted even at the outer periphery of the casting. In the case of the Al-Gr system, however, intense segregation is predicted at the innermost layers.  相似文献   

15.
Electron-microscope data show that the magnetite crystals in iron ore have different microstructure, depending on the temperature and time of ore formation. Thus, in sedimentary–metamorphic iron quartzites and magmatic skarns, the structure of the magnetite crystals is homogeneous and the composition is close to stoichiometric. In Kovdor ore, the magnetite crystals are heterogeneous. The matrix contains isomorphic Al, Mg, Ti, and other impurities as individual spinel microphases. The reduction of magnetite crystals in conditions that resemble sintering indicates that heterogeneous crystals disintegrate on sintering, with the formation of two ore phases: solid solutions of magnetite and wustite that are not involved in liquid-phase strengthening of the sinter. In the final stage of fluxed-sinter production, calcium–silicon silicate binders of melilite composition are formed in the product in place of the melt; these binders are not strong. On the basis of the research findings, it is important, in assessing iron-ore fields, to pay attention not only to the content of iron and silicon oxides in the ore but also to the structure of the magnetite crystals, since the iron in the magnetite determines the direction of melt formation in processing.  相似文献   

16.
Magnesium alloy castings are increasingly used in automotive, aerospace and electronics industries. These castings are mainly produced via high-pressure die-casting (HPDC). During this casting process, molten alloy solidifies within a rigid mold, which resists the alloy’s volumetric contraction. As a result, thermal and mechanical stresses develop in the casting and potentially lead to the nucleation of hot tears.  相似文献   

17.
A two-stage simulation strategy is proposed to predict the as-cast structure. During the first stage, a 3-phase model is used to simulate the mold-filling process by considering the nucleation, the initial growth of globular equiaxed crystals and the transport of the crystals. The three considered phases are the melt, air and globular equiaxed crystals. In the second stage, a 5-phase mixed columnar-equiaxed solidification model is used to simulate the formation of the as-cast structure including the distinct columnar and equiaxed zones, columnar-to-equiaxed transition, grain size distribution, macrosegregation, etc. The five considered phases are the extradendritic melt, the solid dendrite, the interdendritic melt inside the equiaxed grains, the solid dendrite, and the interdendritic melt inside the columnar grains. The extra- and interdendritic melts are treated as separate phases. In order to validate the above strategy, laboratory ingots (Al-4.0 wt pct Cu) are poured and analyzed, and a good agreement with the numerical predictions is achieved. The origin of the equiaxed crystals by the “big-bang” theory is verified to play a key role in the formation of the as-cast structure, especially for the castings poured at a low pouring temperature. A single-stage approach that only uses the 5-phase mixed columnar-equiaxed solidification model and ignores the mold filling can predict satisfactory results for a casting poured at high temperature, but it delivers false results for the casting poured at low temperature.  相似文献   

18.
The effect of La addition (0–0.30 wt%) on the microstructure and hardness of rheological squeeze casting brass alloys was experimentally investigated. The rheological squeeze casting process is improved by controlling the wall surface crystals and melt flow rate to realise the preparation of semi-solid melt with flow, and a brass alloy workpiece with La is produced. The microstructure and properties of the brass alloy samples were investigated using metallography, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction and hardness testing. The results indicate that the hardness of the rheological squeeze casting brass alloy is increased by 20.4% from 108 to 130 HBW with an increase in the La content from 0 to 0.30 wt%. The microstructural analysis results show that La significantly refines the primary α-phase grains, and the main mechanism is the constitutional undercooling and heterogeneous nucleation caused by the La enrichment in the front of the solid–liquid interface. The squeeze pressure promotes undercooling, which improves the nucleation rate and affects the solute diffusion and nucleus growth. The dual effects of these two aspects aggravate the grain refinement process, consequently increasing the number of grain boundaries and improving the hardness of the brass alloy.  相似文献   

19.
Xia  Yatong  Zheng  Jiang  Chen  Juan  Zhang  Yongfa  Shi  Rong  Zhou  Hao  Zhou  Zheng  Yin  Dongdi 《Metallurgical and Materials Transactions A》2021,52(6):2274-2286

In the study, the through-thickness microstructure and its effects on the ductility and strain heterogeneity in high-pressure die-cast AE44 alloy were investigated. The results show that the studied alloy had a gradient microstructure, where two fine-grained skins sandwiched a core with coarse externally solidified crystals (ESCs) embedded in fine grains. In the core, where porosity concentrated, the ultra-coarse ESCs with sizes up to 600 μm were observed. A great amount of Al11RE3 phase, as the predominant intermetallic phase, was distributed in homogeneously through the thickness. High-resolution digital image correlation (DIC) measurement coupled with electron backscatter diffraction (EBSD) was employed to reveal the deformation inhomogeneity and its root cause. It was found that considerable strain localization mainly appeared in the ultra-coarse ESCs with soft orientation for basal slip and the regions where porosity appeared. Unlike the yield strengths and ultimate tensile strengths, the elongations showed a significant variation. Not only defects but also the ultra-coarse ESCs were the primary factors responsible for the variation in ductility.

  相似文献   

20.
Lost foam casting (LFC) is currently one of the most efficient and promising methods of fabricating high-quality thin-wall castings possessing specified dimensional accuracy, required surface roughness, and other properties. This technology is widely used in the production of aluminum alloy products. To minimize costs in the fabrication of wares and to fabricate high-quality castings, it is reasonable to use an increased amount of secondary materials in the charge, herewith paying attention to the melt overheating temperature and holding time. The results of studying the temperature modes of smelting pouring aluminum alloys in the LFC are presented. The most efficient modes in manufacturing conditions under consideration which provide the best quality characteristics of leak-tight castings by dimensional accuracy and surface roughness were as follows: the melt overheating temperature is 880–890°C and the melt pouring temperature into the casting mold is 820–830°C. The influence of various variants of temperature parameters of smelting and pouring the melt of the AK7 composition during the LFC on the content of nonmetallic inclusions in the cast state is investigated. It is revealed that the minimal γ-Al2O3 content in the final alloy is provided by a melt overheating temperature of up to 880–890 or 940–950°C and a melt pouring temperature into the casting mold of 820–830°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号