首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
冻融损伤混凝土力学性能衰减规律   总被引:2,自引:0,他引:2  
为研究冻融作用对混凝土力学性能的影响,采用快冻法将混凝土盐冻或水冻至不同损伤程度后,测其动弹性模量、抗折强度、抗压强度和劈裂抗拉强度.以动弹性模量为损伤变量,分析了冻融损伤与抗折、抗压强度之间的关系,采用回归分析的方法建立了抗折强度衰减方程.结果表明,混凝土抗压、抗折、劈裂抗拉强度以及动弹性模量均随冻融循环作用次数的增加而逐步降低;抗折、劈裂抗拉强度以及动弹性模量的衰减速率随冻融循环作用次数的增加而不断增大,但抗压强度的衰减速率则是先增大后减小;在冻融循环次数相同的情况下,含气量越高、水灰比越低,混凝土的强度损失越小,其力学性能损失的大小顺序依次为:抗折强度和劈裂抗拉强度、动弹性模量、抗压强度;冻融损伤与抗折强度的相关性较好,但与抗压强度的相关性较差,当冻融损伤小于40%时,混凝土的抗压强度一般不低于其初始强度的70%.  相似文献   

2.
为研究冻融损伤对高性能混凝土力学性能损失的影响,将混凝土置于水或盐溶液中快速冻融400次后,测其动弹性模量、抗折、抗压及劈裂抗拉强度。定性分析了冻融循环次数与上述四个评价指标间的关系,并分析了损伤度与相对剩余抗折强度及抗压强度之间的关系,建立了抗折强度的衰减方程。试验结果表明:随着冻融循环次数的增加,混凝土的动弹性模量、抗压、抗折和劈裂抗拉强度均逐步降低,抗压强度的衰减速率先增大后减小,动弹性模量、抗折、劈裂抗拉强度则是不断增大;相同冻融循环条件下,含气量越低、水胶比越大,冻融损失越大;冻融介质对混凝土的强度损失有一定影响,盐溶液对强度造成的损失更大;损伤度与相对剩余抗折强度间具有良好的相关性,但与抗压强度间不具有相关性。  相似文献   

3.
《工业建筑》2016,(9):117-121
为研究工程用水泥基复合材料(ECC)在冻融循环作用后的力学性能,采用快冻快融法对掺入不同类型纤维、不同纤维掺量的试件进行冻融循环试验,研究其在冻融循环作用下质量损失率、纵向相对动弹性模量、立方体抗压强度、抗折强度等力学性能。研究表明:随冻融循环次数增加,试件破坏越严重,质量损失率随冻融循环次数增加而增大,立方体抗压强度和抗折强度随冻融循环次数增加而下降。掺入纤维试件经过冻融循环作用后各方面性能均优于未掺纤维的水泥砂浆试件。体积掺量为2%的日本RECS15×12型PVA纤维的试件性能最好,质量损失率小于2%,纵向相对动弹性模量下降不到30%,且能保持较好的延性,抗冻等级高于F200,能够满足寒冷地区工程需要。  相似文献   

4.
张鹏  李永靖 《混凝土》2020,(4):36-38,45
表面粗糙再生聚丙烯颗粒等体积代替细骨料0、4%、6%、8%,制作不同配合比的混凝土试件,试验选择慢冻法和快冻法,研究冻融0、30、60、90、120、150次再生聚丙烯混凝土试件质量、抗压强度、抗折强度和动弹性模量变化规律和损伤情况,并分析抗冻性。结果表明:增加冻融次数,不同掺量的再生聚丙烯混凝土试件质量、抗压强度、抗折强度、相对动弹性模量均不断降低,损伤增大。适量掺加表面粗糙再生聚丙烯颗粒,可提升强度和动弹性模量,并有效抑制质量损失、强度劣化,提升抗冻性能。综合考虑混凝土抗冻性能,建议掺入表面粗糙的再生聚丙烯颗粒的最佳体积掺量为6%。  相似文献   

5.
高丹盈  谢晓鹏 《工业建筑》2006,36(10):65-68
通过冻融循环试验,研究了钢纤维体积率、冻融循环次数、混凝土强度等级对冻融循环作用下钢纤维混凝土动弹性模量的影响,分析了钢纤维混凝土剥落和损伤机理;测试了钢纤维混凝土冻融后抗压强度、劈拉强度和抗折强度,探讨了钢纤维对混凝土的增强机理。试验结果表明,混凝土强度等级较高时,钢纤维体积率对混凝土抗冻性能的影响比较显著,抑制了钢纤维混凝土的剥落,降低了钢纤维混凝土损伤速率。  相似文献   

6.
为研究冻融循环作用对透水再生混凝土力学性能的影响,采用快冻法进行了不同再生粗骨料取代率下的透水再生混凝土冻融试验,并测试相应阶段的动弹性模量、抗折强度和立方体抗压强度.试验结果表明:透水再生混凝土的相对动弹性模量、相对抗折强度和相对立方体抗压强度均随冻融循环次数或再生粗骨料取代率的增大而下降,衰减速率从大到小依次为:相对抗折强度、相对立方体抗压强度和相对动弹性模量.以动弹性模量为损伤变量,通过数据拟合发现,透水再生混凝土的相对抗折强度、相对立方体抗压强度与损伤度均可用指数函数表示,且相关性较好.  相似文献   

7.
为了研究玄武岩纤维混凝土的抗盐冻性能,以纤维体积率、冻融循环次数为主要变化参数,在3.5%NaCl溶液中对玄武岩纤维混凝土进行了快速冻融试验。研究了不同纤维掺量和不同冻融循环次数下混凝土的质量损失率、相对动弹性模量、抗压强度和抗折强度的变化规律;采用扫描电镜对混凝土盐冻循环前后的微观形貌进行观察,分析玄武岩纤维对混凝土抗盐冻性能的影响机理。结果表明:在盐冻循环作用下,玄武岩纤维的掺入能够有效降低混凝土的质量损失率,减缓其相对动弹性模量的降低,而且能减弱冻融损伤对混凝土抗压、抗折强度的影响;适量玄武岩纤维的掺入能抑制混凝土中裂缝的扩展,减少基体内孔隙、坑洞的数量,延迟初始裂缝和相互贯通裂缝的出现,抗盐冻能力优于普通混凝土。  相似文献   

8.
研究了可再分散丙烯酸酯-苯乙烯共聚物乳胶粉(PRAS)和聚乙烯纤维(PE纤维)对喷射混凝土力学性能和抗冻性能的影响。结果表明:复掺适量PRAS和PE纤维能够显著提高喷射混凝土的抗压强度和抗折强度,降低冻融循环后的质量损失率和提高相对动弹性模量;当PRAS掺量为0.4%、PE纤维体积掺量为1.0%时,喷射混凝土的力学性能和抗冻性能最佳。  相似文献   

9.
通过对11组聚乙烯醇纤维水泥基复合材料(PVA-ECC)试件的抗压强度、抗折强度及单面盐冻试验,探究粉煤灰掺量和纤维掺量对PVA纤维水泥基复合材料力学性能及抗冻性能的影响。结果表明:抗压强度与抗折强度均随粉煤灰掺量的增加而降低;纤维掺量对抗折强度影响较大,而对抗压强度影响很小。单面盐冻试验中,试件单位面积质量损失与相对动弹性模量损失率均随冻融循环次数增加而增长,粉煤灰掺量为45%~50%、纤维掺量为1.75%时,抗冻性能达到最佳。  相似文献   

10.
通过玄武岩纤维混凝土(BFRC)的快速冻融试验和微观孔结构试验,研究了2种冻融介质(水和质量分数为3.5%NaCl溶液)条件下BFRC相对动弹性模量、冻融损伤度以及强度的变化规律,分析了孔结构参数(含气量、孔比表面积、气泡间距系数和气泡平均弦长)与BFRC抗压强度、抗折强度和冻融损伤度的关系,采用灰熵法探讨了BFRC孔结构参数对其抗压强度、抗折强度以及冻融损伤度的影响规律.结果表明:BFRC强度随其含气量、气泡间距系数、气泡平均弦长的增加而减小,而冻融损伤度随上述3个孔结构参数的增加而增加;BFRC强度随其孔比表面积的增加而增加,而冻融损伤度随孔比表面积的增加而减小;对BFRC抗压强度、抗折强度影响最大的因素均为孔比表面积;影响BFRC冻融损伤度的主要因素为气泡间距系数和气泡平均弦长,这2个因素随冻融循环次数、玄武岩纤维掺量的变化而变化.  相似文献   

11.
为了保温混凝土研究水灰比、胶凝材料、陶粒掺量三种因素的变化对保温混凝土的影响,设计了3组9种不同配合比进行试验,测试了保温混凝土的抗压强度、抗折强度、导热系数和干密度,分析了三种因素对保温混凝土的影响关系。试验结果表明:采用陶粒体积掺量为40%,其抗压、抗折强度下降不明显,但导热系数和干密度有较明显的降低;在水灰比为0.3时,干密度达到1200kg.m-3,但抗压、抗折强度达到最大值;随着胶凝材料掺量降低,强度明显下降,干密度和导热系数变化不大;在试验研究的基础上给出了保温混凝土的合理水灰比为0.3;相对陶粒的合理的体积掺量为40%;胶凝材料合理掺量为60%~80%。为保温混凝土工程实践得到了建设性试验经验。  相似文献   

12.
通过对混凝土棱柱体试件进行疲劳荷载和冻融循环交互试验,分析疲劳荷载及冻融循环次数对试验后试件外观形貌、质量、相对动弹性模量和抗压强度的损伤劣化影响。试验结果表明:随着交互试验次数的增多,混凝土试件表面的坑洼面变多、孔洞变大,粗细骨料分离,质量出现先增加后减小的变化趋势,相对动弹性模量及试件的抗压强度下降速率明显加快。3个试验周期后,交互作用的试件与仅冻融循环的试件相比,试件的质量损失率增加0.36%,相对动弹性模量下降30.6%。混凝土的抗压强度降低18.1%。  相似文献   

13.
基于中国北方地区气候特点及混凝土路面的受力特征,研究冻融损伤对玄武岩纤维再生混凝土(BFRC)弯曲疲劳特性的影响。首先对BFRC采用快冻法进行冻融循环试验,研究BFRC的冻融损伤形貌、质量、相对动弹性模量和相对抗折强度的变化; 然后针对经历不同冻融循环次数后BFRC的弯曲疲劳特性进行了试验研究,分析了冻融循环次数与应力水平对BFRC疲劳寿命的影响规律; 最后基于两参数Weibull分布理论对BFRC的疲劳寿命进行分析,预测了不同失效概率下的疲劳寿命并建立了失效概率为0.05和0.5下的双对数疲劳方程。结果表明:随着冻融循环次数的增加,试件表面损伤程度和质量损失率逐渐增大,相对动弹性模量和相对抗折强度逐渐下降,当冻融循环达到225次时,BFRC的相对动弹性模量和相对抗折强度与冻融循环前相比分别下降了12.4%和35.1%; 随着冻融循环次数和应力水平的增加,弯曲疲劳寿命逐渐减小; BFRC经冻融循环后的弯曲疲劳寿命服从两参数Weibull分布,失效概率为0.5的预测疲劳寿命与试验所得平均疲劳寿命十分接近; 建立的双对数疲劳方程能较好地反映冻融后BFRC应力水平S与疲劳寿命N之间的关系,研究成果为BFRC在路面结构中的安全应用提供可靠依据。  相似文献   

14.
研究了冻融循环对尼龙纤维混凝土(体积掺量分别为0.5%,1%,1.5%)和基准混凝土的动态弹性模量与质量变化的影响,以及纤维砂浆力学性能随冻融循环次数的变化规律.试验结果表明:纤维混凝土300次冻融循环时的质量及动态弹性模量损失远远小于基准混凝土,纤维砂浆的抗折强度、抗压强度损失远远小于基准砂浆.尼龙纤维水泥基复合材料抗冻性能的提高,部分原因与尼龙纤维的引气作用有关  相似文献   

15.
通过对混凝土冻融后损伤、力学性能、孔隙特征参数、相对动弹性模量、强度等指标的研究分析发现:随冻融循环次数增加,混凝土的相对动弹性模量和强度逐渐降低,质量逐渐下降,力学性能损伤增大;2倍海水冻融后,混凝土的孔径参数增幅明显大于淡水冻融;随养护时间增加,混凝土的孔径参数不断降低。建议从加入引气剂、关注浆体质量、改善界面过渡区3个方面来降低冻融循环对混凝土的性能损伤。  相似文献   

16.
引气减水剂是指能在混凝土中同时具有引入微小气泡和对水泥颗粒起分散、润湿双重作用的外加剂,不仅起到良好的抗冻作用还能克服因含气带来的混凝土强度降低的不利因素。对掺加4种不同比例AJF-6引气减水剂的混凝土进行了抗折以及冻融循环试验,试验结果表明,AJF-6高效引气减水剂掺量为水泥用量的2.5%时能有效提高混凝土密实度,28d抗折强度提高了18.8%,300次冻融循环后相对动弹性模量达78.9%。  相似文献   

17.
为了研究稻壳灰对水泥基材料力学性能和抗冻融性能的影响,在不同稻壳灰掺量、不同龄期以及不同冻融循环次数等因素影响下开展了基本力学性能试验和冻融循环试验的研究,运用SPSS软件建立了冻融循环试验后掺入稻壳灰的水泥基材料抗压强度的多元线性回归方程,并通过SEM试验揭示了稻壳灰对水泥基材料的抗冻融性能的影响机理。结果表明:稻壳灰掺量在一定范围内,水泥基材料的强度与稻壳灰掺量成正比例关系;养护龄期28 d、稻壳灰掺量7%水泥基材料的抗折和抗压强度与基准组相比分别提高了44.1%、74.4%;随着冻融循环试验次数的增加,稻壳灰水泥基材料的抗折和抗压强度降低速率与基准组相比较为缓慢;SEM试验结构表明水泥基材料在冻融循环作用下,稻壳灰可有效提高水泥基材料的抗冻融性能。  相似文献   

18.
《混凝土》2016,(9)
在研究冬季北方除冰盐地区或近海环境,考虑冻融损伤和氯盐侵蚀耦合作用下整体防水混凝土的耐久性能。将不同水灰比和硅烷乳液掺量的整体防水混凝土试件置于3%Na Cl溶液中,进行加速冻融循环试验,测定不同盐冻循环次数下的相对动弹性模量、质量损失和渗透性,以综合评价整体防水混凝土耐久性。试验结果表明,在冻融-氯盐耦合作用下,整体防水混凝土冻融损伤和质量损失均随着硅烷掺量和冻融循环次数的增加而增加,降低水灰比可以有效提高整体防水混凝土抗冻性。但是,在相同冻融循环次数下,整体防水混凝土仍较普通混凝土具有更好的抗渗透性,并且抗渗透性随着硅烷乳液掺量的增加而提高。  相似文献   

19.
丁苯乳液改性水泥砂浆的力学性能与体积密度   总被引:5,自引:1,他引:4  
在固定水灰比为0.4且改变养护条件下,研究了丁苯乳液掺量对改性水泥砂浆体积密度和力学性能的影响,并对改性水泥砂浆力学性能与体积密度间的相互关系进行分析.结果表明:当丁苯乳液掺量在0~20%(质量分数,下同)之间变化时,改性水泥砂浆体积密度在8%丁苯乳液掺量时最低;改性水泥砂浆的抗压强度和抗折强度在0~8%丁苯乳液掺量之间随丁苯乳液掺量的增加而下降;在丁苯乳液掺量小于10%时,改性水泥砂浆的动弹性模量随着丁苯乳液掺量的增加而减小;当丁苯乳液掺量小于10%时,改性水泥砂浆抗压强度、动弹性模量均与体积密度之间存在着较好的线性对应关系,而抗折强度与其相关性则不明显.  相似文献   

20.
无机矿物掺合料在粘结砂浆中的应用研究   总被引:2,自引:1,他引:1  
主要研究无机矿物掺合料膨润土、重钙、矿粉和粉煤灰对粘结砂浆性能的影响.实验表明,膨润土掺入会引起砂浆的稠度和含气量下降,抗折、抗压强度有一定的增长,掺量为5%时强度达到最大;掺入5%-15%重钙对砂浆稠度、含气量影响不大,抗折、抗压强度总体下降明显,压折比下降,粘结强度基本不变:掺入10%-50%矿粉对砂浆的稠度、含气量影响不大,后期抗折、抗压强度较未掺时有所增长,粘结强度有一定增大;掺入10%-50%粉煤灰使砂浆含气量、压折比和粘结强度下降.XRD分析显示,粘结砂浆28 d水化物主要为Ca(OH)2和C-S-H凝胶.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号