首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selective catalytic reduction (SCR) of NO with methane in the presence of excess oxygen has been investigated over a series of Mn-loaded sulfated zirconia (SZ) catalysts. It was found that the Mn/SZ with a metal loading of 2–3 wt.% exhibited high activity for the NO reduction, and the maximum NO conversion over the Mn/SZ catalyst was higher than that over Mn/HZSM-5. NH3–TPD results of the catalysts showed that the sulfation process of the supports resulted in the generation of strong acid sites, which is essential for the SCR of NO with methane. On the other hand, the N2 adsorption and the H2–TPR of the catalysts demonstrated that the presence of the SO42− species promoted the dispersion of the metal species and made the Mn species less reducible. Such an increased dispersion of metal species suppressed the combustion reaction of CH4 by O2 and increased the selectivity towards NO. The Mn/SZ catalysts prepared by different methods exhibited similar activities in the SCR of NO with methane, indicating the importance of SO42−. The most attractive feature of the Mn/SZ catalysts was that they were more tolerant to water and SO2 poisoning than Mn/HZSM-5 catalysts and exhibited higher reversibility after removal of SO2.  相似文献   

2.
Reforming of methane with carbon dioxide into syngas over Ni/γ-Al2O3 catalysts modified by potassium, MnO and CeO2 was studied. The catalysts were prepared by impregnation technique and were characterized by N2 adsorption/desorption isotherm, BET surface area, pore volume, and BJH pore size distribution measurements, and by X-ray diffraction and scanning electron microscopy. The performance of these catalysts was evaluated by conducting the reforming reaction in a fixed bed reactor. The coke content of the catalysts was determined by oxidation conducted in a thermo-gravimetric analyzer. Incorporation of potassium and CeO2 (or MnO) onto the catalyst significantly reduced the coke formation without significantly affecting the methane conversion and hydrogen yield. The stability and the lower amount of coking on promoted catalysts were attributed to partial coverage of the surface of nickel by patches of promoters and to their increased CO2 adsorption, forming a surface reactive carbonate species. Addition of CeO2 or MnO reduced the particle size of nickel, thus increasing Ni dispersion. For Ni–K/CeO2–Al2O3 catalysts, the improved stability was further attributed to the oxidative properties of CeO2. Results of the investigation suggest that stable Ni/Al2O3 catalysts for the carbon dioxide reforming of methane can be prepared by addition of both potassium and CeO2 (or MnO) as promoters.  相似文献   

3.
A series of calcium-modified alumina-supported cobalt catalysts were prepared with a two-step impregnation method, and the effect of calcium on the catalytic performances of the catalysts for the partial oxidation of methane to syngas (CO and H2) was investigated at 750 °C. Also, the catalysts were characterized by XRD, TEM, TPR and (in situ) Raman. At 6 wt.% of cobalt loading, the unmodified alumina-supported cobalt catalyst showed a very low activity and a rapid deactivation, while the calcium-modified catalyst presented a good performance for this process with the CH4 conversion of 88%, CO selectivity of 94% and undetectable carbon deposition during a long-time running. Characterization results showed that the calcium modification can effectively increase the dispersion and reducibility of Co3O4, decrease the Co metal particle size, and suppress the reoxidation of cobalt as well as the phase transformation to form CoAl2O4 spinel phases under the reaction conditions. These could be related to the excellent catalytic performances of Co/Ca/Al2O3 catalysts.  相似文献   

4.
NO reduction to N2 by C3H6 was investigated and compared over Cu-Al2O3 catalysts prepared by four different methods, namely, the conventional impregnation, co-precipitation, evaporation of a mixed aqueous solution, and xerogel methods. It was found that the catalyst preparation method as well as the Cu content exerts a significant influence on catalyst activity. For the catalysts prepared by the first three preparation methods, with the increase of Cu content from 5 to 15 wt%, the maximum NO reduction conversion decreased slightly, but the temperature for the maximum NO reduction also decreased. For the xerogel Cu-Al2O3, there was a significant decrease in NO reduction conversion with the increase of Cu content from 5 to 10 wt%. In the absence of water vapour, the Cu-Al2O3 catalyst prepared by the impregnation method exhibited the highest activity toward NO reduction. The purity of alumina support was found to be a crucial factor to the activity of the Cu-Al2O3 catalyst prepared by impregnation. In the presence of water vapour, a substantial decrease in NO conversion was observed for the Cu-Al2O3 catalysts prepared by the first three methods, especially for the impregnated Cu-Al2O3 catalyst. In contrast, the presence of water vapour showed only a minor influence on the xerogel 5 wt% Cu-Al2O3 and it showed the highest activity for NO reduction in the presence of 20% water vapour. The xerogel 5 wt% Cu-Al2O3 catalyst was also found to be less affected by a 5 wt% sulfate deposition than the Cu-Al2O3 catalysts prepared by other methods.  相似文献   

5.
A new catalyst composed of nickel oxide and cerium oxide was studied with respect to its activity for NO reduction by CO under stoichiometric conditions in the absence as well as the presence of oxygen. Activity measurements of the NO/CO reaction were also conducted over NiO/γ-Al2O3, NiO/TiO2, and NiO/CeO2 catalysts for comparison purposes. The results showed that the conversion of NO and CO are dependent on the nature of supports, and the catalysts decreased in activity in the order of NiO/CeO2 > NiO/γ-Al2O3 > NiO/TiO2. Three kinds of CeO2 were prepared and used as support for NiO. They are the CeO2 prepared by (i) homogeneous precipitation (HP), (ii) precipitation (PC), and (iii) direct decomposition (DP) method. We found that the NiO/CeO2(HP) catalyst was the most active, and complete conversion of NO and CO occurred at 210 °C at a space velocity of 120,000 h−1. Based on the results of surface analysis, a reaction model for NO/CO interaction over NiO/CeO2 has been proposed: (i) CO reduces surface oxygen to create vacant sites; (ii) on the vacant sites, NO dissociates to produce N2; and (iii) the oxygen originated from NO dissociation is removed by CO.  相似文献   

6.
The mechanism of the CO2 reforming of methane reaction over the Pt/ZrO2 catalyst was investigated using a temporal analysis of products (TAP) reactor system. For comparative purposes, the reaction pathway using a Pt/Al2O3 catalyst was also examined. A reaction sequence is suggested for both catalysts. Over both catalysts, methane decomposition takes place over platinum. The main difference between the two catalysts concerns the carbon dioxide dissociation. Over Pt/Al2O3 this step is assisted by hydrogen. Over Pt/ZrO2 this step takes place over the zirconia support and involves surface vacancies. Moreover, large pools of formate and carbonate species are present on the zirconia. Transient studies conducted to determine the origin of carbon species accumulated during CO2 reforming revealed that more than 99% of the carbon was derived from the methane molecule over both catalysts. Over the Pt/ZrO2 catalyst, only a single very reactive carbon species was detected, while over the Pt/Al2O3 a second less active species was also formed.  相似文献   

7.
Two types of NiO/γ-Al2O3 catalysts prepared by the impregnation and the sol–gel method were used for the partial oxidation of methane to syngas at 850°C (GHSV1.8×105 lkg−1 h−1). The effects of the carbon deposition, the loss and sintering of nickel and the phase transformation of γ-Al2O3 support on the catalytic performance during 80 h POM reaction were investigated with a series of characterization such as XRD, BET, AAS, TG, and XPS. The results indicated that the carbon deposition and the loss and sintering of nickel could not cause the serious decrease of catalytic performance over NiO/γ-Al2O3 catalyst during the short-time reaction. However, the slow process of the support γ-Al2O3 phase transforming into -Al2O3 could slowly decrease the performance of NiO/γ-Al2O3 catalysts. Aimed at the reasons of the deactivation, an improved catalyst was obtained by the complexing agent-assisted sol–gel method.  相似文献   

8.
Novel LaMnO3 perovskite-based structured catalysts have been studied for methane catalytic combustion under lean, pre-mixed conditions. Monoliths have been prepared by wash-coating cordierite honeycomb substrates with lanthanum stabilised ZrO2, on which the perovskite was dispersed by either impregnation or deposition–precipitation (DP) routes. Extensive physico-chemical characterisation of monoliths (by means of XRD, BET, SEM-EDAX, TPR of H2 and drift analysis) has revealed the presence of a zirconia layer firmly anchored on cordierite walls, with remarkable surface area and chemical inertia towards negative interactions with perovskitic active phase. The activity of fresh catalysts for methane combustion is significantly enhanced with respect to bulk LaMnO3, due to good dispersion on the porous support. Catalytic performances and durability have been studied under auto-thermal reaction conditions of interest for radiant pre-mixed burners, with maximum catalyst temperatures up to 1000 °C, through accurate characterisation of ignition transients and steady operation, comparing results with those relevant to both nude cordierite and previously developed monoliths of LaMnO3 supported on La stabilised γ-Al2O3.  相似文献   

9.
Min Yang  Helmut Papp   《Catalysis Today》2006,115(1-4):199-204
Pt/MgO catalysts were prepared by wet impregnation. At 800 °C and atmospheric pressure, Pt/MgO catalysts exhibited a high stability at high gas hourly space velocity of 36,000 ml/g h with a CH4/CO2 ratio of 1.0. During 72 h time on stream, the conversion of CH4 and CO2 remained almost constant, at about 88% and 90%, respectively. There was no loss of Pt. After reaction, the XRD peaks of MgO became broader, indicating amorphization of MgO, which was supported by TEM results. XPS indicated that the reforming reaction had little influence on Pt. CO2-TPSR results showed that some carbon deposition occurred under stoichiometric feed of CH4 and CO2, but it did not result in the deactivation of the catalyst. The deposited carbon came mainly from the decomposition of methane.  相似文献   

10.
A series of sulfated zirconia supported Pd/Co catalysts was synthesized by the sol–gel method and examined for NOx reduction by methane. The NO conversion increased up to a Co/S ratio of 0.43, and then decreased at a higher Co loading (Co/S = 0.95). Sulfate content was also essential for obtaining high selectivity to molecular nitrogen. A catalyst loaded with 0.06 wt.% Pd, 2.1 wt.% Co and 2.1 wt.% S (Pd/Co-SZ-2) exhibited remarkable performance under lean conditions and displayed stability in a long-term durability test using a synthetic reaction mixture containing 10% water vapor. This catalyst exhibited the highest sulfur retention most probably as cobalt sulfide. Besides, the catalytic oxidation of NO to NOy groups was confirmed by FT-IR, in agreement with the general mechanism for the SCR of NO by hydrocarbons. In the absence of oxygen in the feed stream, the catalyst was highly active for NO reduction with methane. IR stretching bands assigned to N2O and adsorbed nitro groups were identified upon adsorbing NO on Pd/Co-SZ-2. This indicates that under rich conditions disproportionation of NO to N2O and NO2 occurs and confirms that the formation of NO2 species is an essential step for NO reduction by CH4.  相似文献   

11.
The catalytic activity of Pt on alumina catalysts, with and without MnOx incorporated to the catalyst formulation, for CO oxidation in H2-free as well as in H2-rich stream (PROX) has been studied in the temperature range of 25–250 °C. The effect of catalyst preparation (by successive impregnation or by co-impregnation of Mn and Pt) and Mn content in the catalyst performance has been studied. A low Mn content (2 wt.%) has been found not to improve the catalyst activity compared to the base catalyst. However, catalysts prepared by successive impregnation with 8 and 15 wt.% Mn have shown a lower operation temperature for maximum CO conversion than the base catalyst with an enhanced catalyst activity at low temperatures with respect to Pt/Al2O3. A maximum CO conversion of 89.8%, with selectivity of 44.9% and CO yield of 40.3% could be reached over a catalyst with 15 wt.% Mn operating at 139 °C and λ = 2. The effect of the presence of 5 vol.% CO2 and 5 vol.% H2O in the feedstream on catalysts performance has also been studied and discussed. The presence of CO2 in the feedstream enhances the catalytic performance of all the studied catalysts at high temperature, whereas the presence of steam inhibits catalysts with higher MnOx content.  相似文献   

12.
Compositions to yield solid solutions were prepared by coprecipitation and firing. Fine active clusters of nickel were obtained by reduction. Phase changes were followed by thermal analysis, X-rays, electron microscopy, surface area measurements, and reforming methane with CO2. Nickel on periclase remained active over 125 h with nearly 100% conversion. The catalysts suppressed carbon deposition which occurred only immediately upstream and downstream of the catalyst. Nickel on spinel solid solution caused the catalyst to shatter with a drastic increase in surface area due to formation of NiAl2O4. The pressure drop decreased the flow rate, making this catalyst infeasible.  相似文献   

13.
Zirconia supported on alumina was prepared and characterized by BET surface area, X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), temperature programmed desorption (TPD), and pulse reaction. 0.2% Pd/ZrO2/Al2O3 catalyst were prepared by incipient wetness impregnation of supports with aqueous solution of Pd(NO3)2. The effects of support properties on catalytic activity for methane combustion and CO oxidation were investigated. The results show that ZrO2 is highly dispersed on the surface of Al2O3 up to 10 wt.% ZrO2, beyond this value tetragonal ZrO2 is formed. The presence of a small amount of ZrO2 can increase the surface area, pore volume and acidity of support. CO–TPD results show that the increase of CO adsorption capacity and the activation of CO bond after the presence of ZrO2 lead to the increase of catalytic activity of Pd catalyst for CO oxidation. CO pulse reaction results indicate that the lattice oxygen of support can be activated at lower temperature following the presence of ZrO2, but it does not accelerate the activity of 0.2% Pd/ZrO2/Al2O3 for methane combustion. 0.2% Pd/ZrO2/Al2O3 dried at 120 °C shows highest activity for CH4 combustion, and the activity can be further enhanced following the repeat run. The increase of treatment temperature and pre-reduction can decrease the activity of catalyst for CH4 combustion.  相似文献   

14.
Catalyst performance of NiO–MgO solid solution catalysts for methane reforming with CO2 and H2O in the presence of oxygen using fluidized and fixed bed reactors under atmospheric and pressurized conditions was investigated. Especially, methane and CO2 conversion in the fluidized bed reactor in methane reforming with CO2 and O2 was higher than those in the fixed bed reactor over Ni0.15Mg0.85O catalyst under 1.0 MPa. In contrast, conversion levels in the fluidized and fixed bed reactor were almost the same over MgO-supported Ni and Pt catalysts. It is suggested that the promoting effect of catalyst fluidization on the activity is related to the catalyst reducibility. On a catalyst with suitable reducibility, the oxidized and deactivated catalyst can be reduced with the produced syngas and the reforming activity regenerates in the fluidized bed reactor during the catalyst fluidization. In addition, the catalyst fluidization inhibited the carbon deposition.  相似文献   

15.
The influence of catalyst pre-treatment temperature (650 and 750 °C) and oxygen concentration (λ = 8 and 1) on the light-off temperature of methane combustion has been investigated over two composite oxides, Co3O4/CeO2 and Co3O4/CeO2–ZrO2 containing 30 wt.% of Co3O4. The catalytic materials prepared by the co-precipitation method were calcined at 650 °C for 5 h (fresh samples); a portion of them was further treated at 750 °C for 7 h, in a furnace in static air (aged samples).

Tests of methane combustion were carried out on fresh and aged catalysts at two different WHSV values (12 000 and 60 000 mL g−1 h−1). The catalytic performance of Co3O4/CeO2 and Co3O4/CeO2–ZrO2 were compared with those of two pure Co3O4 oxides, a sample obtained by the precipitation method and a commercial reference. Characterization studies by X-ray diffraction (XRD), BET and temperature-programmed reduction (TPR) show that the catalytic activity is related to the dispersion of crystalline phases, Co3O4/CeO2 and Co3O4/CeO2–ZrO2 as well as to their reducibility. Particular attention was paid to the thermal stability of the Co3O4 phase in the temperature range of 750–800 °C, in both static (in a furnace) and dynamic conditions (continuous flow). The results indicate that the thermal stability of the phase Co3O4 heated up to 800 °C depends on the size of the cobalt oxide crystallites (fresh or aged samples) and on the oxygen content (excess λ = 8, stoichiometric λ = 1) in the reaction mixture. A stabilizing effect due to the presence of ceria or ceria–zirconia against Co3O4 decomposition into CoO was observed.

Moreover, the role of ceria and ceria–zirconia is to maintain a good combustion activity of the cobalt composite oxides by dispersing the active phase Co3O4 and by promoting the reduction at low temperature.  相似文献   


16.
Nanoparticles of CexZr1−xO2 (x = 0.75, 0.62) were prepared by the oxidation-coprecipitation method using H2O2 as an oxidant, and characterized by N2 adsorption, XRD and H2-TPR. CexZr1−xO2 prepared had single fluorite cubic structure, good thermal stability and reduction property. With the increasing of Ce/Zr ratio, the surface area of CexZr1−xO2 increased, but thermal stability of CexZr1−xO2 decreased. The surface area of Ce0.62Zr0.38O2 was 41.2 m2/g after calcination in air at 900 °C for 6 h. TPR results showed the formation of solid solution promoted the reduction of CeO2, and the reduction properties of CexZr1−xO2 were enhanced by the cycle of TPR-reoxidation. The Pd-only three-way catalysts (TWC) were prepared by the impregnation method, in which Ce0.75Zr0.25O2 was used as the active washcoat and Pd loading was 0.7 g/L. In the test of Air/Fuel, the conversion of C3H8 was close to 100% and NO was completely converted at λ < 1.025. The high conversion of C3H8 was induced by the steam reform and dissociation adsorption reaction of C3H8. Pd-only catalyst using Ce0.75Zr0.25O2 as active washcoat showed high light off activity, the reaction temperatures (T50) of 50% conversion of CO, C3H8 and NO were 180, 200 and 205 °C, respectively. However, the conversions of C3H8 and NO showed oscillation with continuously increasing the reaction temperature. The presence of La2O3 in washcoat decreased the light off activity and suppressed the oscillation of C3H8 and NO conversion. After being aged at 900 °C for 4 h, the operation windows of catalysts shifted slightly to rich burn. The presence of La2O3 in active washcoat can enhance the thermal stability of catalyst significantly.  相似文献   

17.
To get the low temperature sulfur resistant V2O5/TiO2 catalysts quantum chemical calculation study was carried out. After selecting suitable promoters (Se, Sb, Cu, S, B, Bi, Pb and P), respective metal promoted V2O5/TiO2 catalysts were prepared by impregnation method and characterized by X-ray diffraction (XRD) and Brunner Emmett Teller surface area (BET-SA). Se, Sb, Cu, S promoted V2O5/TiO2 catalysts showed high catalytic activity for NH3 selective catalytic reduction (NH3-SCR) of NOx carried at temperatures between 150 and 400 °C. The conversion efficiency followed in the order of Se > Sb > S > V2O5/TiO2 > Cu but Se was excluded because of its high vapor pressure. An optimal 2 wt% ‘Sb’ loading was found over V2O5/TiO2 for maximum NOx conversion, which also showed high resistance to SO2 in presence of water when compared to other metal promoters. In situ electrical conductivity measurement was carried out for Sb(2%)/V2O5/TiO2 and compared with commercial W(10%)V2O5/TiO2 catalyst. High electrical conductivity difference (ΔG) for Sb(2%)/V2O5/TiO2 catalyst with temperature was observed. SO2 deactivation experiments were carried out for Sb(2%)/V2O5/TiO2 and W(10%)/V2O5/TiO2 at a temperature of 230 °C for 90 h, resulted Sb(2%)/V2O5/TiO2 was efficient catalyst. BET-SA, X-ray photoelectron spectroscopy (XPS) and carbon, hydrogen, nitrogen and sulfur (CHNS) elemental analysis of spent catalysts well proved the presence of high ammonium sulfate salts over W(10%)/V2O5/TiO2 than Sb(2%)/V2O5/TiO2 catalyst.  相似文献   

18.
Fischer–Tropsch synthesis was carried out in slurry phase over uniformly dispersed Co–SiO2 catalysts prepared by the sol–gel method. When 0.01–1 wt.% of noble metals were added to the Co–SiO2 catalysts, a high and stable catalytic activity was obtained over 60 h of the reaction at 503 K and 1 MPa. The addition of noble metals increased the reducibility of surface Co on the catalysts, without changing the particle size of Co metal significantly. High dispersion of metallic Co species stabilized on SiO2 was responsible for stable activity. The uniform pore size of the catalysts was enlarged by varying the preparation conditions and by adding organic compounds such as N,N-dimethylformamide and formamide. Increased pore size resulted in decrease in CO conversion and selectivity for CO2, a byproduct, and an increase in the olefin/paraffin ratio of the products. By modifying the surface of wide pore silica with Co–SiO2 prepared by the sol–gel method, a bimodal pore structured catalyst was prepared. The bimodal catalyst showed high catalytic performance with reducing the amount of the expensive sol–gel Co–SiO2.  相似文献   

19.
The NiSO4 supported on Fe2O3-promoted ZrO2 catalysts were prepared by the impregnation method. Fe2O3-promoted ZrO2 was prepared by the coprecipitation method using a mixed aqueous solution of zirconium oxychloride and iron nitrate solution followed by adding an aqueous ammonia solution. No diffraction line of nickel sulfate was observed up to 20 wt.%, indicating good dispersion of nickel sulfate on the surface of Fe2O3–ZrO2. The addition of nickel sulfate (or Fe2O3) to ZrO2 shifted the phase transition of ZrO2 (from amorphous to tetragonal) to higher temperatures because of the interaction between nickel sulfate (or Fe2O3) and ZrO2. 15-NiSO4/5-Fe2O3–ZrO2 containing 15 wt.% NiSO4 and 5 mol% Fe2O3, and calcined at 500 °C exhibited a maximum catalytic activity for ethylene dimerization. NiSO4/Fe2O3–ZrO2 catalysts was very effective for ethylene dimerization even at room temperature, but Fe2O3–ZrO2 without NiSO4 did not exhibit any catalytic activity at all. The catalytic activities were correlated with the acidity of catalysts measured by the ammonia chemisorption method. The addition of Fe2O3 up to 5 mol% enhanced the acidity, surface area, thermal property, and catalytic activities of catalysts gradually, due to the interaction between Fe2O3 and ZrO2 and due to consequent formation of Fe–O–Zr bond.  相似文献   

20.
A series of CoOx/Al2O3 catalysts was prepared, characterized, and applied for the selective catalytic reduction (SCR) of NO by C3H8. The results of XRD, UV–vis, IR, Far-IR and ESR characterizations of the catalysts suggest that the predominant oxidation state of cobalt species is +2 for the catalysts with low cobalt loading (≤2 mol%) and for the catalysts with 4 mol% cobalt loading prepared by sol–gel and co-precipitation. Co3O4 crystallites or agglomerates are the predominant species in the catalysts with high cobalt loading prepared by incipient wetness impregnation and solid dispersion. An optimized CoOx/Al2O3 catalyst shows high activity in SCR of NO by C3H8 (100% conversion of NO at 723 K, GHSV: 10,000 h−1). The activity of the selective catalytic reduction of NO by C3H8 increases with the increase of cobalt–alumina interactions in the catalysts. The influences of cobalt loading and catalyst preparation method on the catalytic performance suggest that tiny CoAl2O4 crystallites highly dispersed on alumina are responsible for the efficient catalytic reduction of NO, whereas Co3O4 crystallites catalyze the combustion of C3H8 only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号