共查询到20条相似文献,搜索用时 15 毫秒
1.
A dislocation–density grain boundary (GB) interaction scheme, a GB misorientation dependent dislocation–density relation, and a grain boundary sliding (GBS) model are presented to account for the behavior of nanocrystalline aggregates with grain sizes ranging from 25 nm to 200 nm. These schemes are coupled to a dislocation–density multiple slip crystalline plasticity formulation and specialized finite element algorithms to predict the response of nanocrystalline aggregates. These schemes are based on slip system compatibility, local resolved shear stresses, and immobile and mobile dislocation–density evolution. A conservation law for dislocation–densities is used to balance dislocation–density absorption, transmission and emission from the GB. The relation between yield stresses and grain sizes is consistent with the Hall–Petch relation. The results also indicate that GB sliding and grain-size effects affect crack behavior by local dislocation–density and slip evolution at critical GBs. Furthermore, the predictions indicate that GBS increases with decreasing grain sizes, and results in lower normal stresses in critical locations. Hence, GBS may offset strength increases associated with decreases in grain size. 相似文献
2.
3.
Yingbin Chen Qishan Huang Qi Zhu Kexing Song Yanjun Zhou Haofei Zhou Jiangwei Wang 《材料科学技术学报》2021,86(27):180-191
Grain growth and shrinkage are essential to the thermal and mechanical stability of nanocrystalline metals,which are assumed to be governed by the coordinated deformation between neighboring grain boundaries(GBs)in the nanosized grains.However,the dynamics of such coordination has rarely been reported,especially in experiments.In this work,we systematically investigate the atomistic mechanism of coordinated GB deformation during grain shrinkage in an Au nanocrystal film through combined state-of-the-art in situ shear testing and atomistic simulations.We demonstrate that an embedded nanograin experiences shrinkage and eventually annihilation during a typical shear loading cycle.The continu-ous grain shrinkage is accommodated by the coordinated evolution of the surrounding GB network via dislocation-mediated migration,while the final grain annihilation proceeds through the sequen-tial dislocation-annihilation-induced grain rotation and merging of opposite GBs.Both experiments and simulations show that stress distribution and GB structure play important roles in the coordinated defor-mation of different GBs and control the grain shrinkage/annihilation under shear loading.Our findings establish a mechanistic relation between coordinated GB deformation and grain shrinkage,which reveals a general deformation phenomenon in nanocrystalline metals and enriches our understanding on the atomistic origin of structural stability in nanocrystalline metals under mechanical loading. 相似文献
4.
Important features observed during high strain rate superplastic deformation are enumerated. Starting from the premise that the phenomenon of structural superplasticity in different classes of materials results when grain boundary sliding that develops to a mesoscopic scale (defined to be of the order of a grain diameter or more) controls the rate of flow, the particular case of high strain rate superplasticity is explained. The rate equation developed is validated using experimental results concerning 5 alloy systems in which an ultra-fine grain size is developed by thermomechanical processing and retained in a similar condition during superplastic deformation by fine, grain boundary pinning particles and 3 alloy composites in which the volume fraction of the reinforcing constituent is significant (15–25%). It is demonstrated that the analysis results in estimates for the externally measured strain rates that are within a factor of two, in addition to providing a physically meaningful free energy of activation for the rate controlling process. This approach explains superplastic flow in different classes of materials in terms of a single rate controlling mechanism of deformation, viz., mesoscopic grain boundary sliding, with the help of a few constants that have the same values for all systems. The system-dependent variables of threshold stress needed for the onset of mesoscopic boundary sliding and free energy of activation are obtained directly from superplasticity stress–strain rate data, without external inputs. 相似文献
5.
E. I. Galindo-Nava G. Torres-Villaseñor P. E. J. Rivera-Díaz-del-Castillo 《Materials Science & Technology》2015,31(6):677-687
Plastic deformation by grain boundary sliding in superplastic alloys is described by a novel thermostatistical approach. The Gibbs free energy for cavity formation at moving grain boundaries is obtained. It equals the competition between the stored energy at the boundaries and the energy dissipated by grain boundary sliding. The latter is approximated by an entropy term induced by moving dislocations to facilitate boundary displacement. Strength loss evolution is estimated from the cavity evolution rate. The theory describes superplastic behaviour of Zn22Al, Zn21Al2Cu and Mg3Al1Zn for various temperatures, strain rates, grain sizes, and specimen geometries. Transition maps are defined for finding the optimal conditions for achieving superplastic behaviour in terms of composition, temperature, geometry and strain rate. 相似文献
6.
Vladimir Yu. Novikov 《Materials Letters》2008,62(14):2067-2069
Effect of finite mobility of triple and quadruple grain boundary junctions on grain growth is studied by numerical simulation. They retard the growth process and transform its kinetics from parabolic one into a sequence consisting of exponential, linear and parabolic steps. This relates even to polycrystals with large initial grain sizes. Such junctions can contribute to microstructure stabilization in nanomaterials. 相似文献
7.
8.
《Current Opinion in Solid State & Materials Science》2016,20(5):231-239
Recent findings about the role of the grain boundary energy in complexion transitions are reviewed. Grain boundary energy distributions are most commonly evaluated using measurements of grain boundary thermal grooves. The measurements demonstrate that when a stable high temperature complexion co-exists with a metastable low temperature complexion, the stable complexion has a lower energy. It has also been found that the changes in the grain boundary energy lead to changes in the grain boundary character distribution. Finally, recent experimental observations are consistent with the theoretical prediction that higher energy grain boundaries transform at lower temperatures than relatively lower energy grain boundaries. To better control microstructures developed through grain growth, it is necessary to learn more about the mechanism and kinetics of complexion transitions. 相似文献
9.
The experimental results of an investigation of the steady‐state motion of individual grain boundaries (GBs) of natural deformation twin and individual twin GBs in bicrystals and tricrystals with triple junction (TJ) are obtained. For experimental observation of GB mobility from the dependence on GB inclination the Zn specimens with individual GBs and TJs were produced. The mobility of natural deformation twin GBs and twin GBs in bicrystals and tricrystals are compared in connection with the GB inclination. 相似文献
10.
Ningning Du Allan F. Bower Paul E. Krajewski Eric M. Taleff 《Materials Science and Engineering: A》2008,494(1-2):86
A continuum polycrystal plasticity model was used to estimate the influence of a threshold stress for grain boundary sliding on the relationship between macroscopic flow stress and strain rate for the aluminum alloy AA5083 when subjected to plane strain uniaxial tension at 450 °C. Under these conditions, AA5083 deforms by dislocation glide at strain rates exceeding 0.001 s−1, and by grain boundary sliding at lower strain rates. The stress–strain rate response can be approximated by , where A and n depend on grain size and strain rate. We find that a threshold stress less or equal to 4 MPa has only a small influence on flow stress and stress exponent n in the dislocation creep regime (a threshold stress of 2 MPa increases n from 4.2 to 4.5), but substantially increases both flow stress and stress exponent in the grain boundary sliding regime (a threshold stress of 2 MPa increases n from 1.5 to 2.7). In addition, when the threshold stress is included, our model predicts stress versus strain rate behavior that is in good agreement with experimental measurements reported by Kulas et al. [M.A. Kulas, W.P. Green, E.M. Taleff, P.E. Krajewski, T.R. McNelley, Metall. Mater. Trans. A 36 (2005) 1249]. 相似文献
11.
Nanolayered materials consisting of alternate layers of two different metals offer enhanced mechanical properties such as hardness but the strengthening mechanism is not well understood when the bilayer thickness approaches a few nanometers. Here, we report on the uniaxial compression of aluminum/palladium pillars (900 nm diameter) with bilayer thickness = 2, 20 and 80 nm. We observe that the deformation behavior of these pillars depends on the value of bilayer thickness, changing from dislocation driven plasticity at large bilayer thickness to shear due to grain rotation via grain boundary sliding at small bilayer thickness. The transition occurs at about a bilayer thickness of 20 nm where a mixture of the two mechanisms is apparent. 相似文献
12.
Through texture and grain boundary control by continuous unidirectional solidification, the continuous columnar-grained polycrystalline Cu71.8Al17.8Mn10.4 shape memory alloys were prepared and possess a strong 〈0 0 1〉 texture along the solidification direction and straight low-energy grain boundary. The alloys show excellent superelasticity of 10.1% improved from 3% for ordinary polycrystalline counterpart and with a tiny residual strain of less than 0.3% after unloading. There are some reasons for the enhanced superelasticity: (1) The martensitic transformation of all grains with strong 〈0 0 1〉-oriented texture occur at the same time under the tensile loading, which can avoid the significant stress concentration problem and transformation strain incompatibility at the grain boundaries due to the high elastic anisotropy in ordinary polycrystalline alloy. (2) High phase transformation strain can be obtained along 〈0 0 1〉 grain orientation. (3) Straight low-energy grain boundary and the absence of grain boundary triple junctions of continuous columnar-grained polycrystals can significantly reduce the blockage of martensitic transformation at the grain boundaries. These results provide a reference to structure design of high-performance polycrystalline Cu-based shape memory alloys. 相似文献
13.
《Current Opinion in Solid State & Materials Science》2016,20(5):324-335
In recent decades researchers have revealed a rich variety of grain boundary segregation phenomena, including interfacial phase, or complexion, transitions. Grain boundary complexion transitions have been shown to induce discontinuous changes in materials properties as a function of temperature and chemical potential, and have been used to explain phenomena that had previously evaded satisfactory explanation. This review article discusses how grain boundary complexions relate to mass transport and mechanical properties, by highlighting both what is understood and emphasizing topics requiring additional study. 相似文献
14.
In the present work the influence of bimodal grain size distributions on superplastic behavior, of a magnesium alloy, was investigated. Samples with different volume fraction of fine grains have been prepared, and their strain rate-stress relation during superplasticity has been measured. Additionally, the predictions of two deformation models, based on the isostrain and the isostress conditions, were compared with the experimental data. The isostrain model allows the major experimental observations to be readily explained and predicted. 相似文献
15.
Interaction of dislocations with a Σ = 5 (210) [001] grain boundary was investigated using molecular dynamics simulation with EAM potentials. The results showed that the dislocation transmitted across the grain boundary during nanoindentation and left a step in the boundary plane. Burgers vector analysis suggested that a partial dislocation in grain I merged into the grain boundary and it was dissociated into another partial dislocation in grain II and a grain boundary dislocation, introducing a step in the grain boundary. Simulation also indicated that, after the transmission, the leading partial dislocation in the grain across the boundary was not followed by the trailing partials, expanding the width of the stacking fault. The results suggested that the creation of the step that accompanied grain boundary motion and expansion of the stacking fault caused resistance to nanoindentation. 相似文献
16.
A. J. Haslam D. Moldovan S. R. Phillpot D. Wolf H. Gleiter 《Computational Materials Science》2002,23(1-4):15-32
We have combined molecular-dynamics (MD) simulations with mesoscale simulations to elucidate the mechanism and kinetics of grain growth in nanocrystalline palladium with a columnar grain structure. The conventional picture of grain growth assumes that the process is governed by curvature-driven grain-boundary (GB) migration. Our MD simulations demonstrate that, at least in a nanocrystalline material, grain growth can also be triggered by the coordinated rotations of neighboring grains so as to eliminate the common GB between them. Such rotation–coalescence events result in the formation of highly elongated, unstable grains which then grow via the GB migration mechanism. These insights can be incorporated into mesoscale simulations in which, instead of the atoms, the objects that evolve in space and time are discretized GBs, grain junctions and the grain orientations, with a time scale controlled by that associated with grain rotation and GB migration and with a length scale given by the grain size. These mesoscale simulations, with physical insight and input materials parameters obtained by MD simulation, enable the investigation of the topology and long-time grain-growth behavior in a physically more realistic manner than via mesoscale simulations alone. 相似文献
17.
Weiping JIA Zhiyong ZHUState Key Laboratory for Corrosion Protection of Metals Institute of Metal research CAS Shenyang ChinaZhongguang WANG Shouxin LIState Key Laboratory for Fatigue Fracture of Materials Institute of Metal Re 《材料科学技术学报》2002,18(2):108-112
Cyclic symmetrical tension-compression fatigue tests in an axial plastic strain range of 2.0×10-4 to 1.5×10-3 were performed on three copper tetracrystal specimens containing two grain boundary triple lines as well as one copper tricrystal specimen employing a multiple step method. Experimental results show that the strengthening effect of triple junction (TJ) on axial saturation stress increased with increasing plastic strain amplitude. The strengthening effects owe much to the strain incompatibilities at TJ. The cyclic stress-strain (CSS) curves of tetracrystals are higher than that of tricrystal. At low strain amplitude, deformation at TJ is smaller than that near grain boundary (GB), which results in that the width of TJ effect zone is smaller than that near GB. Whether GB split or not is associated with the angle between GB and loading axis, activation of slip systems beside GB and the accommodation and annihilation of residual dislocations on GB planes. 相似文献
18.
Igor Simonovski Karl-Fredrik Nilsson Leon Cizelj 《Computational Materials Science》2007,39(4):817-828
The paper presents an analysis of the effects of grain orientations on a short, kinked surface crack in a 316L stainless steel. The kinking of the crack is assumed to take place at the boundary between two neighbouring grains. The analysis is based on a plane-strain finite element crystal plasticity model. The model consists of 212 randomly shaped, sized and oriented grains, loaded monotonically in uniaxial tension to a maximum load of 0.96Rp0.2 (240 MPa). The influence that a random grain structure imposes on a Stage I crack is assessed by calculating the crack tip opening (CTOD) displacements for bicrystal as well as for polycrystal models, considering different crystallographic orientations. Since a Stage I crack is assumed, the crack is always placed in a slip plane. Results from a bicrystal case show that the maximal CTODs are directly related to the stiffness of the grain containing the crack extension. Anisotropic elasticity and crystal plasticity both contribute to this grain stiffness, resulting in maximal CTOD when Schmid factors are the highest on two slip planes. Such crystallographic orientation results in a soft elasto-plastic response. Anisotropic elasticity can additionally increase the softness of a grain at certain crystallographic orientations. Minimal anisotropic elasticity at the crystallographic orientations with the highest Schmid factors causes the CTOD to be maximized. Presuming that the crack will preferably follow the slip plane where the crack tip opening displacement is highest, we show that the crystallographic orientation can affect the CTOD values by a factor of up to 7.7. For a given grain orientation the maximum CTOD is attained when the crack extension deflection into a second grain is between −75.141° and 34°. For the polycrystal case we show that grains beyond the first two crack-containing grains change the CTOD by a factor of up to 3.3 and that the largest CTODs are obtained when placing the crack into a slip plane with crack extension that results in a crack extension being more perpendicular to the external load. 相似文献
19.
通过固溶处理获得不同初始组织状态的S32750双相不锈钢样品,然后进行厚度压下量80%的冷轧变形和1050℃的退火处理,采用SEM-EBSD和XRD技术研究合金相界与晶界特征以及相组成分布情况,并利用拉伸实验、纳米压痕和双环电化学动电位再活化法(DL-EPR)分析不同初始状态样品的组织对力学性能与耐晶间腐蚀性能的影响规律。结果表明:高温固溶处理的合金样品经冷轧退火后晶粒细小均匀,两相分布接近1∶1,且相界占内界面(晶界+相界)比例较高,同相晶粒团簇程度最低,表现出优异的综合力学性能。合金样品经敏化处理后,σ相易沿α相晶界析出,高温固溶并经轧制退火后的样品中,由于α晶界比例较少且满足K-S取向关系的相界比例较高则又表现出良好的晶间腐蚀抗力。因此,通过适当的工艺来调控合金的相界与晶界分布可以实现材料强度和晶间腐蚀抗力的同步改善。 相似文献
20.
In this article, the crack growth driving force and the resistance to cleavage cracking associated with crack front transmission across a high-angle grain boundary in a silicon thin film are analyzed, and a closed-form solution of grain boundary toughness is obtained. It is noticed that the fracture resistance of the grain boundary is a function of the film thickness. This size effect is attributed to the nonuniform nature of cleavage front advance. 相似文献