首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过水泥和粉煤灰等固化剂对南沙淤泥进行固化处理,并在模拟滨海环境下进行干湿循环试验,通过无侧限抗压强度试验、直剪试验、扫描电镜试验,研究不同干湿循环次数和不同水泥粉煤灰掺量对其力学性能和微观结构的影响。研究结果表明:固化淤泥土的内摩擦角、黏聚力、无侧限抗压强度随干湿循环次数的增加而呈现先上升后下降的特点,随着水泥,粉煤灰掺量的增加而增加。微观试验结果表明:干湿循环影响固化淤泥土中胶凝体晶体颗粒的生成,从而影响固化土结构的致密性。  相似文献   

2.
活性MgO碳化固化土的干湿循环特性试验研究   总被引:1,自引:0,他引:1  
碳化固化技术是一种利用二氧化碳对搅拌有活性氧化镁的土体进行碳化,以达到快速提高强度的低碳搅拌处理软土的创新技术。通过室内试验研究干湿循环对碳化固化土物理力学特性的影响,并与相同掺量下水泥固化土进行对比。结果表明:活性Mg O固化粉土碳化3 h试样的无侧限抗压强度可达5 MPa,粉质黏土碳化24 h试样可达2.6 MPa;干湿循环后碳化固化土的干密度降低,而水泥土干密度基本不变;6次干湿循环后粉土碳化试样的无侧限抗压强度仍然能达到4 MPa以上,为水泥固化粉土强度的2倍,具有较好的抗干湿循环性能;经过6次干湿循环后,粉质黏土碳化试样的残余强度仅为35%,而水泥固化粉质黏土降到65%,表明固化粉质黏土的抗干湿循环性能均较差,且粉质黏土碳化试样的抗干湿循环能力不及水泥固化粉质黏土试样。通过X射线衍射(XRD)、电镜扫描(SEM)及压汞试验(MIP)测试表明干湿循环对粉土碳化试样的累计孔隙影响不大,因此粉土试样仍然具有比较大的密实度来保证试样强度;粉质黏土碳化试样因孔隙增加明显而变得疏松,因此强度显著降低。  相似文献   

3.
为改良低液限粉质黏土的力学与耐久性能,提出了以磷石膏-钢渣-矿渣(PSG, Phospogypsum-Steel slag-Ground granulated blast-furnace slag)为材料的全固废固化剂对低液限粉质黏土进行固化,并与同掺量的P.O 42.5普通硅酸盐水泥固化土进行对比。研究了不同PSG掺量(5%、10%、15%)和不同龄期对固化土无侧限抗压强度、劈裂强度、水稳定性、干缩变形和抗冻融循环能力的影响,并通过电镜扫描(SEM)和X射线衍射(XRD)分析了其微观固化机制。试验结果表明:随着固化剂掺量的增加,固化土的最大干密度增大,最优含水率减小。PSG固化土具有较高的后期强度和水稳性能,28d的抗压强度达到了5.28MPa,水稳系数达到93.5%。90d的累计失水量和干缩应变分别为71.3g和1.12×10-3,比水泥固化土的79.6g和1.28×10-3降低了10.43%和12.5%。20次冻融循环后,PSG固化土的强度损失为21.65%,比水泥固化土的27.25%降低了5.6%。微观测试发现大量絮凝状C-S-H胶凝...  相似文献   

4.
陈杨柳 《福建建材》2023,(7):6-8+24
基于工程项目需求,探究了高炉矿渣、粉煤灰及氧化钙对固化土体无侧限抗压强度的影响,旨在为漳州某房建工程项目地基处理提供理论依据。结果表明,高炉矿渣作为固化剂时,淤泥质黏土的无侧限抗压强度随着氧化钙掺量的增加呈现出先增大后减小的趋势,且当氧化钙掺量为干土质量的3%时,无侧限抗压强度达到最大;当粉煤灰作为固化剂时,淤泥质黏土的无侧限抗压强度随着氧化钙含量的增加而增大;复掺15%高炉矿渣+10%粉煤灰对项目的淤泥质黏土固化效果最好。  相似文献   

5.
采用再生微粉和工业废渣固化淤泥,研究了固化材料的类型(工业废渣基固化材料A、工业废渣-再生微粉基固化材料B)和掺量(5%、10%、15%、20%)、淤泥含水率(17%、45%、70%)对固化淤泥力学性能的影响,并进行了XRD和SEM分析,探讨了固化机理。结果表明:固化材料B的抗压强度比固化材料A的抗压强度低;固化材料B固化淤泥的无侧限抗压强度比固化材料A固化淤泥的无侧限抗压强度低;随着固化材料掺量的增加,固化淤泥的无侧限抗压强度增大;随着淤泥含水率的增加,固化淤泥的无侧限抗压强度降低;综合考虑经济性、绿色低碳和固化淤泥的力学性能,推荐采用固化材料B作为淤泥的固化材料。  相似文献   

6.
为了改善青弋江分洪道工程淤泥质土地基的物理力学性能,选用普通硅酸盐水泥、粉煤灰、水玻璃以及木质素磺酸钠组成的水泥基复合固化剂,以青弋江芜湖段典型淤泥质土样作为试验土样,进行了室内固化试验研究,分析了固化剂掺量、淤泥质土初始含水率以及养护龄期的改变对固化土无侧限抗压强度和抗剪强度参数的影响关系。研究结果表明:对于提高青弋江淤泥质土强度,试验所用固化剂作用效果明显,90d龄期养护条件下,掺入复合固化剂处理的固化淤泥质土无侧限抗压强度最高为单掺水泥条件下固化土无侧限抗压强度的4.2倍,同时前者抗剪强度也明显大于后者;固化土无侧限抗压强度随固化剂掺量增加而提高,但增长速率逐渐减缓,同时还随着养护龄期的增加而提高,两者呈明显的对数关系。  相似文献   

7.
采用磷石膏与石灰、水泥综合稳定路基土,分别对石灰磷石膏稳定土与水泥磷石膏稳定土进行CBR试验、抗压回弹模量试验和7 d无侧限抗压强度试验,确定了磷石膏综合稳定路基土的推荐配合比。结果表明:石灰磷石膏稳定土和水泥磷石膏稳定土的CBR、抗压回弹模量和无侧限抗压强度均随着磷石膏掺量的增加而提高;石灰磷石膏稳定土中石灰掺量为5%~7%,且当石灰与磷石膏的质量比为1∶1.5时,水泥磷石膏稳定土中水泥掺量为4%~6%,且当水泥与磷石膏的质量比为1∶2时,混合料的力学性能和经济性最佳。  相似文献   

8.
为更深入降低水泥固化黏土的成本,文章用粉煤灰、砂、石子掺入到水泥固化黏土中,通过不同原料掺入比和不同龄期下的无侧限抗压强度试验,分析出这些原料对固化土强度的影响规律。结果表明,水泥掺量的持续增加可以显著提高固化黏土的抗压强度,且水泥掺量越大,影响越显著。  相似文献   

9.
在吹填淤泥质黏土中掺入不同比例的生石灰和粉煤灰,对不同掺入比的固化土进行无侧限抗压强度试验,分别测定不同龄期固化土强度。根据结果分析加固效果、确定合理的掺灰比,并与常用固化剂比较加固效果。结果表明,当生石灰的掺量一定时,粉煤灰的掺量在15%左右时无侧限抗压强度达到峰值,粉煤灰掺量一定时固化土无侧限抗压强度随着生石灰掺量增大而增大。替代水泥、生石灰等常用固化剂,采用掺入15%粉煤灰与10%生石灰混合固化剂加固吹填淤泥加固效果明显,粉煤灰与生石灰混合加固是一种既经济又环保的加固吹填淤泥方法。  相似文献   

10.
试验研究了由赤泥、粉煤灰和水泥组成的稳定土固化剂的配比、物理力学性能及其对工程渣土固化效果和无侧限抗压强度的影响规律,利用X射线衍射(XRD)和扫描电镜(SEM)表征了水泥-赤泥-粉煤灰稳定土固化剂的矿物组成和微观形貌,分析了稳定土固化剂的作用机理.试验结果表明,固化剂中水泥用量固定时,其胶砂试样的强度随着赤泥掺量的增...  相似文献   

11.
固化处理已成为软弱土地基处理的主要方式之一,固化土在湿化作用下的力学和变形特性研究对路基等固化土工构筑物的稳定性分析和沉降变形预测具有重要意义。以无锡地区典型淤泥质黏土为研究对象,采用硅酸盐水泥进行固化处理,研究不同水泥掺量和湿化程度条件下固化淤泥质黏土的无侧限抗压强度特性和变形特性。结果表明:水泥掺量的增加有助于提高土体的强度并降低土体的压缩变形,但水泥掺量对回弹变形无显著影响;随着固化土含水率的提高,土体的无侧限抗压强度降低,变形增大,表明湿化过程对水泥固化土的强度和变形特性存在不利影响。实际工程中应注意做好固化土工构筑物的防排水措施,尽量减少湿化作用的影响,保障固化土工构筑物的安全稳定。  相似文献   

12.
针对水泥稳定材料引起的基层开裂及缓凝时间短的问题,采用粉煤灰、矿渣粉、脱硫石膏、电石渣为主要原料,配制道路水稳层路用胶凝材料,代替缓凝硅酸盐水泥。结果表明,固废基胶凝材料凝结时间相较水泥延迟了2h,其7d和28d抗折、抗压强度均满足规范要求;固废基稳定混合料14d及28d无侧限抗压强度与水泥稳定混合料7d及28d基本相等,同时28d冻融循环残留强度与30次抗硫酸盐耐腐蚀系数均大于85%,高于水泥稳定材料;固废基稳定混合料90d时试验段贯通裂缝数量4~5条,小于水泥稳定混合料数量的1/7。  相似文献   

13.
水泥固化重金属污染土干湿循环特性试验研究   总被引:7,自引:0,他引:7  
水泥固化/稳定法是修复污染土地基的常用方法,修复后的固化土在外界环境干湿循环作用下的稳定性如何是事关修复成败的关键所在。通过系统的室内试验,着重研究了水泥固化Pb2+、Zn2+污染土在干湿循环作用下的强度特性、淋滤特性以及微结构变化规律,揭示了水泥固化重金属污染土的微观作用机制。试验结果表明,固化土体的强度及淋滤特性随着水泥掺量的增加得到了显著改善。固化重金属污染土的无侧限抗压强度随干湿循环次数的增加先增大,达到峰值后,随干湿循环次数的继续增大而减小。污染物掺量较低时,重金属离子的滤出浓度在干湿循环作用初期略有降低,此后则有所增加,但变化幅度较小;高污染物掺量时,滤出液中的重金属离子浓度较高,且随着干湿循环次数的增加而不断增大。低污染物掺量下,水泥对Pb2+及Zn2+固化效果相差不大;高污染物掺量下,水泥对Zn2+的固化效果较好。经过干湿循环作用后的固化土的扫描电镜试验结果与与其宏观力学及淋滤特性指标变化规律一致,从微观角度揭示了固化土工程性质的变化机制。  相似文献   

14.
为解决水泥稳定土在应用过程中早期强度低、易开裂、水稳定性不良的问题,开发出一种低收缩抗裂水泥土路面基层用减缩增强材料,系统评价了稳定土力学性能、收缩性能及水稳定性能。结果表明:随着龄期的延长,采用减缩增强材料的稳定土各项力学性能逐渐提高,7 d龄期下无侧限抗压强度6.9 MPa。28 d的水稳系数90.1%,稳定土经受5次干湿循环后,水稳系数达到了106.5%,强度没有出现损失情况。与水泥稳定土相比,减缩增强材料稳定土具有较小的收缩量,表现出良好的抗收缩性能。  相似文献   

15.
依托济南轨道交通R1线工程演马庄西站工程,采用水泥复合土组合桩,施工工艺要求水泥土流动度需达到180~200mm,满足流动性要求的传统水泥土无侧限抗压强度较低,难以满足施工工艺要求。根据水泥固化土机理和碱性激发粉煤灰活性原理,通过复掺粉煤灰、生石灰和聚羧酸减水剂,配制适合新工艺的水泥复合土。利用正交试验方法测试水泥掺入比、粉煤灰掺量、生石灰掺量和聚羧酸减水剂掺量对大流动性水泥复合土无侧限抗压强度的影响,研究水泥复合土的固化机理、粉煤灰与生石灰的作用机理和黏土对聚羧酸减水剂的吸附作用,探索黏土矿物的吸附机理,并以现场取芯的方式验证所选水泥复合土强度。  相似文献   

16.
垃圾焚烧底灰与无机胶结剂混合固化是一种固废转化的处理方式。分别采用不同掺量的水泥、石灰、石膏为固化剂,改变垃圾焚烧底灰掺量,开展底灰固化试验研究,对固化砌块的无侧限抗压强度、重金属浸出量进行测试,并进行XRD、SEM分析。结果表明:固化材料配比为100%垃圾焚烧底灰、25%水泥和25%石膏时,无侧限抗压强度最高,达18.5 MPa;固化砌块的强度随养护龄期的延长而提高;固化砌块满足Ⅲ类土壤环境质量要求,浸出毒性低于Ⅴ类地表水环境质量标准要求,可用作砌筑材料。  相似文献   

17.
宋树祥  郑超  杨昆  冯德銮 《工业建筑》2023,(12):190-197
为探索砂粒对水泥固化华南滨海软土强度和干湿循环特性的影响规律,制备了一系列不同掺砂量和掺砂粒径的水泥固化华南滨海软土试样,分别进行无侧限抗压强度试验和海水及淡水条件下的干湿循环试验,同时对加载完毕的试样进行扫描电镜(SEM)测试和X射线衍射(XRD)试验。试验结果表明:掺砂水泥土试样的第7,14,28天无侧限抗压强度随掺砂量的提高而增大,其第28天强度随掺砂粒径的减小而增大;掺砂水泥土试样经历两轮干湿循环后的强度损失率最大达61%,干湿循环导致的强度劣化特性随砂粒径的减小和掺砂量的增大而得到更好的改善,并且,掺砂水泥土试样在淡水条件下的抗干湿循环能力明显优于海水条件。SEM和XRD的测试结果表明:掺砂水泥固化华南滨海软土的作用主要表现在:1)模量替换作用(高模量的砂粒替换小模量的软土);2)砂粒-水泥土界面胶结作用;3)裂纹扩展阻隔作用。  相似文献   

18.
为研究水泥稳定土处置盐渍土软弱地基问题,考虑水泥掺量、含盐量和含水率三因素,进行水泥稳定土28d无侧限抗压强度试验.正交试验分析表明,水泥稳定土中含盐量的多少显著影响其无侧限抗压强度的大小;水泥掺量、含水率的改变对试件的无侧限抗压强度有一定影响,试件强度随着水泥掺量的增加而增大,随着含水率的增大而减小,其变化幅度均不明显;水泥掺量与含水率的交互作用也显著影响着水泥稳定土的无侧限抗压强度.  相似文献   

19.
由于硅酸盐水泥在生产过程中容易造成严重的资源消耗,因此粉煤灰常被用来部分替代水泥固化剂。但是粉煤灰由于自身的低活性,其改性土强度的形成,通常需要较长的养护周期。因此采用一种早强型粉煤灰基固化剂,通过一系列的无侧限抗压强度试验,探究了改性土无侧限抗压强度与固化剂掺量、养护龄期、改性土孔隙率等参数的变化规律。试验结果表明,早强型粉煤灰改性土7 d无侧限抗压强度可以达到28 d强度的80%~90%。基于试验结果,建立了基于孔隙率/掺量两个参数的强度预测公式,并进一步提出了预测公式的折减系数。  相似文献   

20.
为实现滨海淤泥资源再利用,通过承载比(CBR)、无侧限抗压强度和抗压回弹模量试验探究了不同固化剂及其掺量对滨海淤泥固化性能的影响,并基于现行规范对滨海淤泥固化土用于路基填筑的可行性进行了分析。结果表明,滨海淤泥固化土的CBR值、无侧限抗压强度和抗压回弹模量均随着固化剂掺量的增加而增大;相同掺量下,偏硅酸钠对石膏的激发作用大于对水泥的激发作用,水泥掺入偏硅酸钠后,淤泥固化土的CBR值增大了3.4%~12.5%,而石膏掺入偏硅酸钠后,固化土CBR值增大了9.4%~41.7%;当固化剂A、固化剂C和固化剂D的掺量超过4%,固化剂B的掺量超过6%时,滨海淤泥固化土的CBR值能够满足《公路路基设计规范》中路基填筑用土CBR≥8%的要求;当固化剂A、固化剂C和固化剂D的掺量≥6%,固化剂B掺量≥8%时,抗压回弹模量能够满足《公路沥青路面设计规范》给出的路基填筑用土的抗压回弹模量要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号