首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The scattering far zone for light transmitted through a sphere following p - 1 internal reflections by a family of near-grazing incident rays is subdivided into a lit region and a shadow region. The sharpness of the ray theory transition between the lit and the shadow regions is smoothed in wave theory by radiation shed by electromagnetic surface waves. It is shown that when higher-order terms in the physical optics approximation to the phase of the partial-wave scattering amplitudes are included, the transition between the lit and the shadow regions becomes a two-ray-to-zero-ray transition, called a superweak caustic in analogy to the more familiar scattering caustics and weak scattering caustics. One of the merged rays is a tunneling ray.  相似文献   

2.
When a dielectric circular cylinder is obliquely illuminated, the scattering angle associated with the Airy caustics of the cylinder's primary rainbow depends on the tilt of the cylinder. We display records of the scattering pattern for a transparent poly(methyl methacrylate) fiber ranging from small values of tilt through values of tilt that are sufficiently large for the Airy caustics from both sides of the fiber to merge in a meridional plane containing the incident wave vector and the fiber's axis. The records are compared directly with the evolution of the caustic projected onto the observation plane, and certain qualitative features of the global evolution of the caustics are confirmed. Although the observations used laser illumination, they are relevant to anticipating the scattering by sunlit transparent tilted cylinders.  相似文献   

3.
Semiclassical scattering phenomena appearing in the far-zone scattered intensity of a point source of electromagnetic radiation inside a spherical particle are examined in the context of both ray theory and wave theory, and the evolution of the phenomena is studied as a function of source position. A number of semiclassical effects that do not occur for plane-wave scattering by the sphere appear prominently for scattering by an interior source. These include a series of scattering resonances and a new family of rainbows in regions of otherwise total internal reflection. Diffractive effects accompanying the semiclassical phenomena are also examined.  相似文献   

4.
Xu F  Ren KF  Cai X  Shen J 《Applied optics》2006,45(20):5000-5009
On the basis of our previous work on the extension of the geometrical-optics approximation to Gaussian beam scattering by a spherical particle, we present a further extension of the method to the scattering of a transparent or absorbing spheroidal particle with the same symmetric axis as the incident beam. As was done for the spherical particle, the phase shifts of the emerging rays due to focal lines, optical path, and total reflection are carefully considered. The angular position of the geometric rainbow of primary order is theoretically predicted. Compared with our results, the M?bius prediction of the rainbow angle has a discrepancy of less than 0.5 degrees for a spheroidal droplet of aspect radio kappa within 0.95 and 1.05 and less than 2 degrees for kappa within 0.89 and 1.11. The flux ratio index F, which qualitatively indicates the effect of a surface wave, is also studied and found to be dependent on the size, refractive index, and surface curvature of the particle.  相似文献   

5.
In this paper, we investigate Lamb wave interaction with delamination in an infinite carbon fiber reinforced plastics (CFRP) laminate by a hybrid method. The infinite CFRP laminate is divided into an exterior zone and an interior zone. In the exterior zone, the wave fields are expressed by wave mode expansion. In the interior zone, the wave fields are modeled by the finite element method (FEM). Considering the continuity condition at the boundary between the exterior and interior zones, the global wave fields can be calculated. Lastly, numerical examples show how a delamination in the laminate influences the mode conversion of different incident wave modes.  相似文献   

6.
Rainbow scattering by a coated sphere   总被引:1,自引:0,他引:1  
Lock JA  Jamison JM  Lin CY 《Applied optics》1994,33(21):4677-4690
We examine the behavior of the first-order rainbow for a coated sphere by using both ray theory and Aden-Kerker wave theory as the radius of the core a(12) and the thickness of the coating δ are varied. As the ratio δ/a(12) increases from 10(-4) to 0.33, we find three classes of rainbow phenomena that cannot occur for a homogeneous-sphere rainbow. For δ/a(12) ? 10(-3), the rainbow intensity is an oscillatory function of the coating thickness, for δ/a(12) ≈ 10(-2), the first-order rainbow breaks into a pair of twin rainbows, and for δ/a(12) ≈ 0.33, various rainbow-extinction transitions occur. Each of these effects is analyzed, and their physical interpretations are given. A Debye series decomposition of coated-sphere partial-wave scattering amplitudes is also performed and aids in the analysis.  相似文献   

7.
Barton JP 《Applied optics》1998,37(15):3339-3344
A previously developed theoretical procedure for determination of electromagnetic fields associated with the interaction of a higher-order Gaussian beam with a homogeneous spherical particle is used to investigate the effects of incident beam type on far-field scattering. Far-field scattering patterns are calculated for (0,0), (0,1), and (1,1) mode Hermite-Gaussian beams and for the helix doughnut mode beam. The effects of incident beam type on the angular distribution of far-field scattering, for both on-sphere-center and off-sphere-center focusing, are examined.  相似文献   

8.
On scattering and radiation problem for a cylinder in water of finite depth   总被引:1,自引:0,他引:1  
Wave loadings due to scattering and radiation for a floating vertical circular cylinder in water of finite depth are derived. These are derived from the total velocity potential which can be decomposed as four velocity potentials; one due to scattering in the presence of an incident wave on fixed structure (diffraction problem), and the other three due to radiation respectively by surge, heave and pitch motion on calm water (radiation problem). For each case, the velocity potential is derived by considering two regions, namely, interior region and exterior region. The complex matrix equations can be solved numerically to determine the unknown coefficients to compute the wave loads. Numerical results can be obtained for different depth to radius and draft to radius ratios.  相似文献   

9.
An exact analytical solution is obtained for the scattering of electromagnetic waves from a plane wave with arbitrary directions of propagation and polarization by an aggregate of interacting homogeneous uniaxial anisotropic spheres with parallel primary optical axes. The expansion coefficients of a plane wave with arbitrary directions of propagation and polarization, for both TM and TE modes, are derived in terms of spherical vector wave functions. The effects of the incident angle α and the polarization angle β on the radar cross sections (RCSs) of several types of collective uniaxial anisotropic spheres are numerically analyzed in detail. The characteristics of the forward and backward RCSs in relation to the incident wavelength are also numerically studied. Selected results on the forward and backward RCSs of several types of square arrays of SiO? spheres illuminated by a plane wave with different incident angles are described. The accuracy of the expansion coefficients of the incident fields is verified by comparing them with the results obtained from references when the plane wave is degenerated to a z-propagating and x- or y-polarized plane wave. The validity of the theory is also confirmed by comparing the numerical results with those provided by a CST simulation.  相似文献   

10.
Shape optimization of acoustic scattering bodies is carried out using genetic algorithms (GA) coupled to a boundary element method for exterior acoustics. The BEM formulation relies on a modified Burton-Miller algorithm to resolve exterior acoustics and to address the uniqueness issue of the representation problem associated with the Helmholtz integral equation at the eigenvalues of the associated interior problem. The particular problem of interest considers an incident wave approaching an axisymmetric shaped body. The objective is to arrive at a geometric configuration that minimizes the acoustic intensity captured by a receiver located at a distance from the scattering body. In particular, the acoustic intensity is required to be minimum as measured proportional to the integral of the product of the potential and its complex conjugate over a volume of space which models the receiver. This is opposed to the more traditional measure of the potential at a single point in space.  相似文献   

11.
12.
The p=0 term of the Mie-Debye scattering amplitude contains the effects of external reflection and diffraction. We computed the reflected intensity in the time domain as a function of the scattering angle and delay time for a short electromagnetic pulse incident on a spherical particle and compared it to the predicted behavior in the forward-focusing region, the specular reflection region, and the glory region. We examined the physical consequences of three different approaches to the exact diffraction amplitude, and determined the signature of diffraction in the time domain. The external reflection surface wave amplitude gradually replaces the diffraction amplitude in the angular transition region between forward-focusing and the region of specular reflection. The details of this replacement were studied in the time domain.  相似文献   

13.
Xu YL 《Applied optics》1995,34(21):4573-4588
We present a comprehensive solution to the classical problem of electromagnetic scattering by aggregates of an arbitrary number of arbitrarily configured spheres that are isotropic and homogeneous but may be of different size and composition. The profile of incident electromagnetic waves is arbitrary. The analysis is based on the framework of the Mie theory for a single sphere and the existing addition theorems for spherical vector wave functions. The classic Mie theory is generalized. Applying the extended Mie theory to all the spherical constituents in an aggregate simultaneously leads to a set of coupled linear equations in the unknown interactive coefficients. We propose an asymptotic iteration technique to solve for these coefficients. The total scattered field of the entire ensemble is constructed with the interactive scattering coefficients by the use of the translational addition theorem a second time. Rigorous analytical expressions are derived for the cross sections in a general case and for all the elements of the amplitude-scattering matrix in a special case of a plane-incident wave propagating along the z axis. As an illustration, we present some of our preliminary numerical results and compare them with previously published laboratory scattering measurements.  相似文献   

14.
We computed the Debye series p=1 and p=2 terms of the Mie scattered intensity as a function of scattering angle and delay time for a linearly polarized plane wave pulse incident on a spherical dielectric particle and physically interpreted the resulting numerical data. Radiation shed by electromagnetic surface waves plays a prominent role in the scattered intensity. We determined the surface wave phase and damping rate and studied the structure of the p=1,2 surface wave glory in the time domain.  相似文献   

15.
Marston PL 《Applied optics》1998,37(9):1551-1556
Glare points associated with the Airy caustics of once and twice internally reflected rays are visible in the scattering by sunlit icicles. Supporting color photographs include an image of the far-field scattering. Relevant rays are analogous to the Descartes rays of primary and secondary rainbows of drops; however, the caustic conditions for the icicle are predicted to be affected by tilt of the illumination relative to the axis of the icicle. A model for the caustic evolution, given for a circular dielectric cylinder, manifests a transition in which the Airy caustic (and associated glare points) merge in the meridional plane at a critical tilt. At this critical tilt the merged glare point is predicted to be very bright. The calculations use the Bravais effective refractive index and generalized ray tracing.  相似文献   

16.
Summary Following a classical plate bending theory for magneto-elastic interactions under quasistatic electromagnetic field, we consider the scattering of time harmonic flexural waves by a through crack in a conducting plate under a uniform magnetic field normal to the crack surface. It is assumed that the plate has the finite electric conductivity, and the electric and magnetic permeabilities of the free space. An incident wave giving rise to moments symmetric about the crack plane is applied in an arbitrary direction. Fourier transform method is used to solve the mixed boundary value problem which reduces to a pair of dual integral equations. These dual integral equations are further reduced to a Fredholm integral equation of the second kind. The dynamic moment intensity factor versus frequency for several values of incident angle is computed and the influence of the magnetic field on the normalized values is displayed graphically.  相似文献   

17.
This work presents the general theory of resonance scattering (GTRS) by an elastic spherical shell immersed in a nonviscous fluid and placed arbitrarily in an acoustic beam. The GTRS formulation is valid for a spherical shell of any size and material regardless of its location relative to the incident beam. It is shown here that the scattering coefficients derived for a spherical shell immersed in water and placed in an arbitrary beam equal those obtained for plane wave incidence. Numerical examples for an elastic shell placed in the field of acoustical Bessel beams of different types, namely, a zero-order Bessel beam and first-order Bessel vortex and trigonometric (nonvortex) beams are provided. The scattered pressure is expressed using a generalized partial-wave series expansion involving the beam-shape coefficients (BSCs), the scattering coefficients of the spherical shell, and the half-cone angle of the beam. The BSCs are evaluated using the numerical discrete spherical harmonics transform (DSHT). The far-field acoustic resonance scattering directivity diagrams are calculated for an albuminoidal shell immersed in water and filled with perfluoropropane gas, by subtracting an appropriate background from the total far-field form function. The properties related to the arbitrary scattering are analyzed and discussed. The results are of particular importance in acoustical scattering applications involving imaging and beam-forming for transducer design. Moreover, the GTRS method can be applied to investigate the scattering of any beam of arbitrary shape that satisfies the source-free Helmholtz equation, and the method can be readily adapted to viscoelastic spherical shells or spheres.  相似文献   

18.
We have recently identified the resonant scattering from dielectric bispheres in the specular direction, which has long been known as the specular resonance, to be a type of rainbow (a caustic) and a general phenomenon for bispheres. We discuss the details of the specular resonance on the basis of systematic calculations. In addition to the rigorous theory, which precisely describes the scattering even in the resonance regime, the ray-tracing method, which gives the scattering in the geometrical-optics limit, is used. Specular resonance is explicitly defined as strong scattering in the direction of the specular reflection from the symmetrical axis of the bisphere whose intensity exceeds that of the scattering from noninteracting bispheres. Then the range of parameters for computing a particular specular resonance is specified. This resonance becomes prominent in a wide range of refractive indices (from 1.2 to 2.2) in a wide range of size parameters (from five to infinity) and for an arbitrarily polarized light incident within an angle of 40 degrees to the symmetrical axis. This particular scattering can stay evident even when the spheres are not in contact or the sizes of the spheres are different. Thus specular resonance is a common and robust phenomenon in dielectric bispheres. Furthermore, we demonstrate that various characteristic features in the scattering from bispheres can be explained successfully by using intuitive and simple representations. Most of the significant scatterings other than the specular resonance are also understandable as caustics in geometrical-optics theory. The specular resonance becomes striking at the smallest size parameter among these caustics because its optical trajectory is composed of only the refractions at the surfaces and has an exceptionally large intensity. However, some characteristics are not accounted for by geometrical optics. In particular, the oscillatory behaviors of their scattering intensity are well described by simple two-wave interference models.  相似文献   

19.
Mees L  Ren KF  Gréhan G  Gouesbet G 《Applied optics》1999,38(9):1867-1876
We present numerical results concerning the properties of the electromagnetic field scattered by an infinite circular cylinder illuminated by a circular Gaussian beam. The cylinder is arbitrarily located and arbitrarily oriented with respect to the illuminating Gaussian beam. Numerical evaluations are provided within the framework of a rigorous electromagnetic theory, the generalized Lorenz-Mie theory, for infinite cylinders. This theory provides new insights that could not be obtained from older formulations, i.e., geometrical optics and plane-wave scattering. In particular, some emphasis is laid on the waveguiding effect and on the rainbow phenomenon whose fine structure is hardly predictable by use of geometrical optics.  相似文献   

20.
We develop a semiclassical theory to explain the rapid ripple fluctuations in the extinction efficiency of light scattering by a transparent prolate spheroid. The theory is based on uniform asymptotic expansion of spheroidal radial functions. We have calculated the extinction efficiency for normal and oblique incidence. Our results suggest that the excitation of resonant electromagnetic modes inside a spheroidal particle is an important factor in the ripple structure. To verify this assumption and based on a Breit-Wigner formula, we develop a method to fit the peaks that appear in the spheroid's extinction cross section when some scattering parameters vary. In other words, our calculations suggest that narrow resonances are related to ripple fluctuations, whereas broad resonances contribute to extinction cross-sectional background.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号