首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
We introduce and analyze an optoelectronic mixer (OEM) based on the kinetic inductive photoresponse in high-temperature superconducting (HTS) films. This device combines photodetection and optoelectronic mixing functions through a nonlinear change in the kinetic inductance of the HTS film when it is irradiated by an optically modulated microwave signal. A comprehensive theoretical analysis is presented using the two-temperature model to describe the nonbolometric (quantum) photoresponse and the kinetic inductance model for the electrical part. Upon the optical irradiation, the change in the electron temperature of the HTS film leads to a parametric change in the kinetic inductance of the photoexcited HTS bridge, which in the presence of a bias current produces a periodic voltage waveform. In order to obtain the temporal behavior and the frequency content of the output voltage in terms of the input local oscillator and modulation frequencies, the kinetic inductance model and Fourier series analysis have been used and their physical consequences have been discussed in detail. The merit characteristics of the kinetic inductive HTS-OEM, such as intrinsic and optical conversion gains and noise temperature, are evaluated and compared with other high-frequency mixers. This is followed by the numerical simulation of the proposed device.  相似文献   

2.
The physical origin of kinetic inductance is examined for 1-D nanostructures, where the Fermi liquid theory prevails. In order to have appreciable kinetic inductance, ballistic transport must exist, with no inelastic scattering inside the nanowires. Kinetic inductance is assigned to the nanowire itself and independent of its surroundings, whereas magnetic inductance is assigned to the nanowire and substrate. Kinetic and magnetic inductances are in series in an equivalent circuit representation. If there are $m$ transmission modes and $n$ multiwalls in the nanostructure, kinetic inductance decreases by a factor of $hbox{1}/(mn)$ . The relation of the predicted results to preliminary experimental findings is discussed.   相似文献   

3.
A method for the calculation of the current distribution, resistance, and inductance matrices for a system of coupled superconducting transmission lines having finite rectangular cross-section is presented. These calculations allow accurate characterization of both high-Tc and low-T c superconducting strip transmission lines. For a single stripline geometry with finite ground planes, the current distribution, resistance, inductance, and kinetic inductance are calculated as functions of the penetration depth for various film thicknesses. These calculations are then used to determine the penetration depth for Nb, NbN, and YBa2Cu3O7-x superconducting thin films from the measured temperature dependence of the resonant frequency of a stripline resonator. The calculations are also used to convert measured temperature dependence of the quality factor to the intrinsic surface resistance as a function of temperature for an Nb stripline resonator  相似文献   

4.
A circuit model of the Gunn device that retains both the time dependent and nonlinear device properties is presented. The model is based on the physical properties of a high-field domain in a uniformly doped sample and represents this domain and the remainder of the device by appropriate circuit elements. A computer program has been written that allows the device to be connected to any combination of RLC elements up to and including two parallel RLC circuits in series. Computer calculations have been made with a low resistance series circuit to simulate the Gunn mode of operation. The variation of Gunn frequency with bias voltage has been calculated and is in qualitative agreement with experiments. An inductance of 1 nH in series with 1 ohm is found to significantly alter results in comparison with the pure resistive case. The effect of this series inductance has also been observed experimentally as a lack of harmonics in resistive device mounts with stray inductance. Results obtained with a parallel RLC circuit point out the importance of circuit voltage control on the domain behavior. The LSA diode is treated as a bulk conductance following the drift velocity-electric field curve for GaAs. The bulk velocity and differential mobility are approximated by polynomials of electric field from which the device equivalent circuit is obtained. A physical insight into the operation of the LSA device is gained through a plot of time-integrated differential mobility with time. It is shown that an RF load for which this integral does not change appreciably over an RF period results in maximum efficiency. Results of efficiency and negative resistance of the device obtained for a bias field of 10 kV/cm are presented and are in good agreement with calculations of other workers.  相似文献   

5.
The series resistance of a high-quality varactor diode is primarily determined by the resistance of the semiconductor material close to the junction. With increasing reverse bias, the width of the space-charge region becomes greater, and the series resistance decreases. Theoretical models of graded and step junctions have been assumed, and calculations have been made of the series resistance as a function of bias. Epitaxial silicon diodes have been measured for series resistance as a function of bias by using the transmission loss method at 6 to 12 Gc/s, with the diode mounted across a reduced-height waveguide. The variation of series resistance with bias agrees well with the theoretical calculations. By measuring of the 3-dB bandwidth of the series resonance of the diode mounted in the reduced-height waveguide, the junction capacitance and the effective series inductance of the package also can be determined. Because the width of the space-charge region must vary with applied voltage in order to obtain the varactor characteristic, the diode cannot have zero-series resistance at zero-volt bias. The minimum possible series resistance is a function of the breakdown voltage and increases with increasing breakdown voltage. Calculations of the maximum possible cutoff frequency as a function of the diode breakdown voltage are presented for both graded and step junction silicon varactors. A plot of series resistance vs. reverse bias can be used to determine the impurity concentration profile in the epitaxial film. The impurity concentration profile can also be determined by measuring the capacitance vs. reverse bias, a technique which has been in use for some time. However the former method appears to be more accurate in that it is independent of junction area.  相似文献   

6.
This paper develops a new series resonant (current resonant) DC link inverter with a voltage clamped circuit. The proposed circuit has a fixed pulse frequency operation. The fixed pulse frequency at 20-50 kHz enables the system to work without audible noise, and to involve the much smaller-sized DC inductance and output capacitors compared with hard-switched current source inverters. The proposed circuit has a voltage clamped circuit which could control the voltage stress of the switches. In this paper, explanations of the new circuit configuration, the simulation, design considerations, and some experimental results are included  相似文献   

7.
Conventional series resonant converters have researched and applied for high-efficiency power units due to the benefit of its low switching losses. The main problems of series resonant converters are wide frequency variation and high circulating current. Thus, resonant converter is limited at narrow input voltage range and large input capacitor is normally adopted in commercial power units to provide the minimum hold-up time requirement when AC power is off. To overcome these problems, the resonant converter with auxiliary secondary windings are presented in this paper to achieve high voltage gain at low input voltage case such as hold-up time duration when utility power is off. Since the high voltage gain is used at low input voltage cased, the frequency variation of the proposed converter compared to the conventional resonant converter is reduced. Compared to conventional resonant converter, the hold-up time in the proposed converter is more than 40ms. The larger magnetising inductance of transformer is used to reduce the circulating current losses. Finally, a laboratory prototype is constructed and experiments are provided to verify the converter performance.  相似文献   

8.
章治国  余海生 《微电子学》2012,42(3):356-362
以能量双向流动双有源桥(DAB)串联谐振变换器为研究对象,在考虑隔离变压器激磁电感和泄漏电感影响的基础上,建立双有源桥串联谐振变换器的准确等效模型,推导出其稳态工作特性。分析了DAB串联谐振变换器软开关条件和激磁电感最优值选择方法。设计了一种工作在谐振频率处的DAB串联谐振DC/DC变换器,当电压增益M=1时,所有开关在全负载范围内都工作,均能实现ZVS。还分析了负载变化时谐振电压和电流的变化规律。最后给出设计实例,并用SABER仿真软件搭建了实验电路,仿真结果验证了理论分析的有效性。  相似文献   

9.
《Applied Superconductivity》1999,6(10-12):519-523
We propose a method for inductance calculation of three-dimensional superconducting structures by using software designed for high-frequency normal metal cases. By examining the analytical expressions for the current density distributions of the same ideal parallel plane structure in both the high-frequency normal metal case and the superconductor case, we obtain a correction factor for the kinetic inductance calculation in the latter. It is then assumed that this correction factor can be applied to real superconducting layers with finite widths. The total inductance of any superconducting structure can be obtained by finding the magnetic field energy in the high-frequency normal metal case with the same configuration, and adding the kinetic energy with the correction factor applied. Normal metal field simulators, such as MAXWELL, can readily be used. A SQUID loop inductance is simulated as a test case on MAXWELL, and 3% agreement is achieved with the experimental result.  相似文献   

10.
In this letter, we investigate the impact of inductance on bundles of single-walled carbon nanotubes (SWCNT) for future very large scale integration interconnect applications. Leveraging a scalable equivalent circuit model, we assess the relative impact of magnetic inductance and the worst case theoretical value of kinetic inductance on both delay and voltage overshoot. Based on our results, even if the worst case theoretical value for kinetic inductance is assumed, it will only increase the delay and the voltage overshoot by a maximum of 6% and 3%, respectively. Therefore, kinetic inductance will not be a significant factor in the future SWCNT bundle-based interconnect solutions  相似文献   

11.
In this article, a contactless power transfer system using a series–series–parallel resonant converter (SSPRC) is proposed. The proposed converter can improve on or eliminate the disadvantages of the contactless system based on conventional resonant converters, since it independently compensates for a primary side leakage inductance, a secondary side leakage inductance and a magnetising inductance. The proposed converter also reduces the circulating currents and the reactive power by controlling the phase angle difference between the inverter output voltage and the current. In addition, the system design can be simplified, since the voltage gain is determined only by the transformer turns ratio for the overall load range without being affected by the other transformer parameters. The proposed converter is analysed with respect to the gain and current margin. The system design procedure is then described for the proposed circuit based on the circuit analysis. Finally, the experimental results are presented in order to verify the proposed contactless power supply.  相似文献   

12.
A one-transistor memory cell on silicon-on-insulator, called floating-body cell (FBC), has been developed and demonstrated. Threshold voltage difference between the "0"-state and the "1"-state, which is a key parameter for realizing a large-scale memory by FBCs, is measured and analyzed using a 96 kb array diagnostic monitor (ADM). A function test of the ADM yielded a fail-bit probability of 0.002%. A new metric relating to the fail-bit probability, that is, the ratio of the threshold voltage difference over the total threshold voltage variation, is introduced and applied to the measurement results. Read current distributions are also evaluated for various operation voltages. This paper also investigates substrate bias dependence of the threshold voltage unique to fully-depleted devices. Channel impurity and substrate impurity concentration dependence of the threshold voltage are analyzed based on experimental data and device simulation.  相似文献   

13.
Analyses and experimental results are given for a family of three Class D current-driven rectifiers. The diode current is half-sine wave and the diode voltage is a square wave. The diode forward voltage and forward resistance are taken into account in the analyses. The basic performance parameters of the rectifiers are determined, such as input resistance, voltage transfer function, efficiency, and power factor. The ripple voltage is estimated, and some effects of the equivalent series resistance and equivalent series inductance of filter capacitors on the ripples are discussed. The experimental results were obtained using IR31DQ06 Schottky diodes at 1 MHz and 16 W output power  相似文献   

14.
基于回转器原理,提出了一种可在较宽频带内工作、具有大电感值和高Q值、Q值相对于电感值可以独立调节的新型有源电感。在回转器的负跨导器中,引入了调制MOS管。一方面,增加了一个新的回转通路,进而增加了回转次数,实现了大电感值。另一方面,创建了一个反馈支路,减小了等效串联电阻,实现了高Q值。将为正跨导器提供偏置的电流源与负跨导器交叉耦合连接,形成负阻结构,增大了等效并联电阻,进一步提高Q值。在有源电感的输入端串接小尺寸MOS管,减小了等效输入电容,实现了高的谐振频率和宽的工作频带。对有源电感进行验证,结果表明,Q峰值可高达1 996,电感峰值可高达54 nH,工作频带为0~12 GHz。协同调节有源电感的两个外部偏置电压时,实现了Q值相对于电感值的独立调节。Q值峰值从52到995大幅度变化时,电感峰值的变化幅度仅为5.3%。  相似文献   

15.
The time-dependent dielectric breakdown has been investigated in a series of nominally identical Co–Fe–B/MgO/Co–Fe–B junctions by voltage ramp experiments. The results divulge that the breakdown voltage strongly depends on the polarity of the applied voltage, junction area, ramp speed and the annealing temperature. Magnetic tunnel junctions (MTJs) with positive bias on the top electrode show higher breakdown voltage than MTJs with negative bias. We found that there is a significant decrease in the breakdown voltage when the annealing temperature is increased above 350 °C. The experimental data can be described by different specific forms of breakdown probability functions which lead to different extrapolation of life time of junctions.  相似文献   

16.
The design and simulation of a novel silicon Schottky diode for nonlinear transmission line (NLTL) applications is discussed in this paper. The Schottky diode was fabricated on a novel silicon-on-silicide-on-insulator (SSOI) substrate for minimized series resistance. Ion implantation technology was used as a low-cost alternative to molecular beam epitaxy to approximate the delta (/spl delta/) doping profile, which results in strong nonlinear CV characteristics. The equivalent circuit model of the Schottky diode under reverse bias conditions was extracted from the S-parameter measurement performed on the diode. The measured CV characteristics show strong nonlinearity, the junction capacitance varies from 182 to 47.5 fF as the reverse bias voltage is varied from 0 to -5 V. A parasitic inductance of 40 pH was measured for the silicon Schottky diode, which is much smaller than a comparable sized GaAs Schottky diode. This small inductance is an advantage for the silicon Schottky diode offering improvement in the silicon NLTL performance.  相似文献   

17.
This paper gives the theory and experimental results for a current-source parallel-resonant inverter with a transformer used to change voltage levels and provide isolation. The analysis is performed in the frequency domain using Fourier series techniques to predict output power, efficiency, DC-to-AC voltage transfer function, and component voltage and current stresses. The inverter consists of two switches, a large choke inductor, a transformer, and a parallel-resonant circuit. The magnetizing inductance of the transformer is used as the inductance of the parallel-resonant circuit, thereby requiring one less component. Each switch consists of a MOSFET in series with a diode. The MOSFETs have their sources grounded so there is no need for a complicated gate-drive circuit. An inverter was designed and constructed. The DC input voltage was 156 V and the output voltage was a sine wave with a peak value of 224 V at an operating frequency of 50 kHz. The output power at full load was 100 W  相似文献   

18.
In this paper, we treat the incident photons as an electromagnetic plane wave and simulate the wave power coupling to the the hot-electron superconducting single-photon detector to investigate its connection with the experimental system quantum efficiency over different wavelengths. Then we propose a lumped equivalent circuit model based on the kinetic inductance variation induced by the incident photon stream when the serpentine superconducting thin-film nano-wire is dc-biased close to its critical current. The computed output voltage matches experimental results for both amplitude and frequency.  相似文献   

19.
This paper considers the scaling of nanowire transistors to 10-nm gate lengths and below. The 2-D scale length theory for a cylindrical surrounding-gate MOSFET is reviewed first, yielding a general guideline between the gate length and the nanowire size for acceptable short-channel effects. Quantum confinement of electrons in the nanowire is discussed next. It gives rise to a ground-state energy and, therefore, a threshold voltage dependent on the radius of the nanowire. The scaling limit of nanowire transistors hinges on how precise the nanowire size can be controlled. The performance limit of a nanowire transistor is then assessed by applying a ballistic current model. Key issues such as the density of states of the nanowire material are discussed. Comparisons are made between the model results and the published experimental data of nanowire devices.   相似文献   

20.
We investigate an instantaneous common terminal voltage-controlled harmonics compensator constructed by a shunt active filter with an appropriate series inductance including the line impedance. This compensator can reduce or compensate both the ac line voltage distortion derived from the downstream utility source voltage harmonics and the upstream current harmonics by nonlinear loads at the same time. The control system can be easily constructed without directly detecting the common terminal voltage to be compensated. Therefore, the main circuit configuration and the control system are simple. The harmonics compensation level and the compensation current can be easily adjusted by changing the feedback gain for the sensing inductance voltage drop. In this paper, we describe the basic principle of the control method, the modified control method, the circuit construction by the pulsewidth-modulation-controlled shunt active filter and the control system of the compensator. Then, we show some operating waveforms for the cases of the downstream voltage distortion and the upstream harmonics current from the nonlinear loads by simulation analysis and experiments to verify the feasibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号