首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
O. O. Ajayi  K. C. Ludema 《Wear》1990,140(2):191-206
The formation of transfer film and the consequent effects on the friction and wear behavior of ceramic materials during repeat sliding contact were studied. This was done using four structural ceramics, namely silicon nitride, silicon carbide, alumina and zirconia, with a cylinder-on-flat test configuration.

The transfer film consists of reattached fine wear debris particles, the film, whenever formed, is strongly attached, enough to resist being wiped off by the slider. Calculations suggest that the fine particles are attached primarily by van der Waals forces and to a lesser extent by electrostatic attractive forces. As a consequence, the formation of transfer film leads to a decrease in the wear rate because of the ‘protecting’ role of the film. The presence of the film at the contact interface also results in high friction. The presence of a liquid environment and/or surface active species reduces the particle adhesive forces and hence can inhibit the formation of a transfer film.  相似文献   


2.
Nano-objects in dry and liquid conditions have shown reductions in friction and wear on the macroscale. Studies in low viscosity liquids with nanoparticles and nanotubes made of lubricating materials such as molybdenum disulfide (MoS2) and tungsten disulfide (WS2) are limited. In this research, MoS2 and WS2 nanotubes with spherical gold (Au) nano-objects as a control are studied on the nanoscale under dry and low viscosity liquid environments for their effect on friction and wear reduction. Atomic forces microscopy (AFM) experiments on the nanoscale are performed in single-nano-object contact with an AFM tip, where nano-objects are laterally manipulated and multiple nano-object contact with a tip attached to a glass sphere sliding over several nano-objects. Wear tests were performed on the nanoscale by means of AFM as well as on the macroscale using a ball-on-flat tribometer to relate friction and wear reduction on both scales. Results indicate that nano-objects such as MoS2 and WS2 nanotubes contribute to friction and wear reduction due to the reduced contact area and the possible rolling and sliding on the nanoscale. On the macroscale, reductions in friction and wear occur due to possible exfoliation of outer layers in addition to other mechanisms just mentioned.  相似文献   

3.
This article presents the results of nanoscale friction and adhesion of nanoparticle-textured surfaces (NPTS) using atomic force microscope (AFM). The effects of coverage ratio, texture height, and packing density on the adhesion and friction of the NPTS were investigated. The nano-textured surfaces were produced by self-assembling Au nanoparticles (NPs) with diameters of 20 nm and 50 nm on the silicon (100) surfaces, respectively. Surface morphology of the NPTS was characterized by field emission scanning electron microscopy and AFM. The results show that the NPTS significantly reduced the adhesive force compared to the smooth surface. The adhesion of NPTS is mainly dependent on the coverage ratio of NPs rather than the texture height and higher coverage ratio resulted in smaller adhesive force. The reduced adhesion of textured surfaces was attributed to the reduced real area of contact. The friction of NPTS is mainly dependent on the spacing between asperities. The lowered frictional force was obtained when the spacing between asperities is less than the size of AFM tip, because of the effectively reduced real area of contact between the AFM tip and the NPTS surface.  相似文献   

4.
This paper examines friction as a function of the sliding velocity and applied normal load from air to UHV in a scanning force microscope (SFM) experiment in which a sharp silicon tip slides against a flat Si(100) sample. Under ambient conditions, both surfaces are covered by a native oxide, which is hydrophilic. During pump-down in the vacuum chamber housing the SFM, the behavior of friction as a function of the applied normal load and the sliding velocity undergoes a change. By analyzing these changes it is possible to identify three distinct friction regimes with corresponding contact properties: (a) friction dominated by the additional normal forces induced by capillarity due to the presence of thick water films, (b) higher drag force from ordering effects present in thin water layers and (c) low friction due to direct solid–solid contact for the sample with the counterbody. Depending on environmental conditions and the applied normal load, all three mechanisms may be present at one time. Their individual contributions can be identified by investigating the dependence of friction on the applied normal load as well as on the sliding velocity in different pressure regimes, thus providing information about nanoscale friction mechanisms.  相似文献   

5.
Velocity dependent friction laws in contact mode atomic force microscopy   总被引:1,自引:0,他引:1  
Stark RW  Schitter G  Stemmer A 《Ultramicroscopy》2004,100(3-4):309-317
Friction forces in the tip–sample contact govern the dynamics of contact mode atomic force microscopy. In ambient conditions typical contact radii between tip and sample are in the order of a few nanometers. In order to account for the large interaction area the dynamics of contact mode atomic force microscope (AFM) is investigated under the assumption of a multi-asperity contact interface between tip and sample. Thus, the kinetic friction force between tip and sample is the product of the real contact area between both solids and the interfacial shear strength. The velocity strengthening of the lateral force is modeled assuming a logarithmic relationship between shear-strength and velocity. Numerical simulations of the system dynamics with this empirical model show the existence of two different regimes in contact mode AFM: steady sliding and stick–slip where the tip undergoes periodically stiction and kinetic friction. The state of the system depends on the scan velocity as well as on the velocity dependence of the interfacial friction force between tip and sample. Already small viscous damping contributions in the tip–sample contact are sufficient to suppress stick–slip oscillations.  相似文献   

6.
杨欣  杨宁 《润滑与密封》2023,48(8):136-144
基于DMT接触模型,在理论上计算金刚石表面纳米摩擦的摩擦力和摩擦因数;采用原子力显微镜,以金刚石探针和片状金刚石试件作为摩擦副,在大气环境下分别研究机械抛光和聚焦离子束(FIB)刻蚀的金刚石试件的摩擦学特性,并比较实验结果和DMT接触模型计算结果。结果表明:金刚石试件的摩擦因数均随着载荷的增加而减小,这与以往对金刚石微观摩擦的研究结果相符合;DMT接触模型计算结果与机械抛光表面试验结果吻合较好,而略高于FIB刻蚀表面试验结果,验证了DMT模型在金刚石纳米摩擦研究中的适用性。通过表面粗糙度和碳原子化学状态分析,得出粗糙表面对探针滑动的阻碍作用和FIB刻蚀过程中生产的非晶碳的减摩作用是DMT模型应用于上述2种加工表面产生差异的原因。  相似文献   

7.
Poor or inefficient lubrication often gives rise to high friction and wear losses in machine components, which adversely affect their performance, efficiency, and durability. Many approaches are being explored to enhance the antifriction and antiwear properties of sliding machine components. In this study, the antifriction and antiwear properties of carbon spheres, synthesized from plastic waste by an autogenic process, were investigated as an additive to a poly-alpha-olefin (PAO-4 grade) oil. When dispersed at 1 wt% concentration, the carbon spheres reduced both friction and wear under boundary-lubricated sliding conditions. In particular, the reduction in wear was quite dramatic and appeared to be enabled by the formation of a fairly thick (≈200 nm) carbon-rich boundary film, the formation of which is attributed to tribochemical interactions between the carbon particles and sliding contact surfaces.  相似文献   

8.
This paper presents micro and nanofriction studies on thin silica/aminosilica-triazine hybrid composite coatings on silicon substrate. The silica/aminosilica coatings were made on silicon using the dip-coating method and then modified by alkoxy- and aryloxy-triazine derivatives. Formation of hybrid coatings permits a greater flexibility of their resulting properties. Microfriction tests were carried out with a sliding ceramic ball (load range of 10–80 mN) on the composite flat surface, using a tribometer ball-on-sample system. Sliding speed was 25 mm/min at room temperature. Nanofriction was measured using the Friction Force Microscopy. It is shown that surface modification of silica/aminosilica layers by triazine derivatives, to form inorganic–organic hybrid coatings, improves friction properties. All tested triazine derivatives, particularly long alkoxy- substituted s-triazines, cause a decrease in the friction coefficients in microfriction tests, in comparison to a non-modified silica/aminosilica thin film. The same effect was also observed for some tested triazine derivatives at nanofriction measurements.  相似文献   

9.
Ionic liquids (ILs) are considered as a new kind of lubricant for micro/nanoelectromechanical system (M/NEMS) due to their excellent thermal and electrical conductivity. However, so far, only few reports have investigated the tribological behavior of molecular thin films of various ILs. Evaluating the nanoscale tribological performance of ILs when applied as a few nanometers-thick film on a substrate is a critical step for their application in MEMS/NEMS devices. To this end, four kinds of ionic liquid carrying methyl, hydroxyl, nitrile, and carboxyl group were synthesized and these molecular thin films were prepared on single crystal silicon wafer by dip-coating method. Film thickness was determined by ellipsometric method. The chemical composition and morphology were characterized by the means of multi-technique X-ray photoelectron spectrometric analysis, and atomic force microscopic (AFM) analysis, respectively. The nano- and microtribological properties of the ionic liquid films were investigated. The morphologies of wear tracks of IL films were examined using a 3D non-contact interferometric microscope. The influence of temperature on friction and adhesion behavior at nanoscale, and the effect of sliding frequency and load on friction coefficient, load bearing capacity, and anti-wear durability at microscale were studied. Corresponding tribological mechanisms of IL films were investigated by AFM and ball-on-plane microtribotester. Friction reduction, adhesion resistance, and durability of IL films were dependent on their cation chemical structures, wettability, and ambient environment.  相似文献   

10.
《Wear》2006,260(7-8):745-750
Rare-earth (RE) (lanthanum-based) thin films were prepared on hydroxylated glass substrates by a self-assembling process from specially formulated solution. Atomic force microscope (AFM) and X-ray photoelectron spectrometry (XPS) and scanning electron microscope (SEM) are used to characterize the thin films. The tribological properties of the as-prepared thin films sliding against a steel ball were evaluated on a friction and wear tester. The tribological experiment shows that the friction coefficient of glass substrate reduced from 0.85 to 0.13 after the formation of RE self-assembled film (SAM) on its surface. And the RE self-assembled film has longer wear life (2880 sliding pass). It is demonstrated that RE self-assembled film exhibited good wear resistant property. The superior friction reduction and wear life of RE films are attributed to good adhesion of the film to the substrate and special characteristic of the RE elements.  相似文献   

11.
Asperities with hemispherical peaks were fabricated on a silicon substrate using a focused ion beam. Pull-off and friction forces were measured on each asperity using atomic force microscopy (AFM) in high vacuum (HV) of 2 × 10–5 Pa. The probe of the AFM cantilever had a flat square tip, approximately 1 × 1 m2 in area. The radius of curvature of the asperity peaks ranged from 70 to 610 nm. The results showed that the pull-off force was roughly proportional to this radius. The friction force was proportional to the pull-off force. Effects of the substrate temperature on pull-off force on a plane (the flat substrate) and friction force on an asperity were also examined. The pull-off force on the flat substrate increased with increasing contact time at a substrate temperature of 100 °C or lower, but was independent of contact time at 190 °C or higher. This suggests that the capillary cannot form at a substrate temperature of 190 °C or higher. The friction force increased with lower sliding velocities at 100 °C or lower, suggesting the capillary has a lubricating effect that prevents direct solid contact.  相似文献   

12.
Results are presented of lateral force measurements using the atomic force microscope (AFM) and the surface forces apparatus (SFA). Two different probes are used in the AFM measurements; a sharp silicon nitride tip (radius R20 nm) and a glass ball (R15 m). The lateral force is measured between the (silicon nitride or glass) probe and a mica surface which has been coated by a thin lubricant film. In the SFA, a thin lubricant film separates two molecularly smooth mica surfaces (R1 cm) which are slid relative to each other. Perfluoropolyether (PFPE) and polydimethylsiloxane (PDMS) were used as the lubricant films. In the SFA where the contact diameter is largest, the PFPE film shows much lower friction than PDMS. As the size of the probe decreases, the difference in the measured friction decreases. For sharp AFM tips, no clear distinction between the tribological properties of the films can be made. Hence, the measured coefficient of friction varies according to the length scale probed, at least for small dimensions.  相似文献   

13.
In this work, thin films deposited by pulsed DC magnetron sputtering of [Ti–Al/Ti–Al–N] n and [Ti–Cr/Ti–Cr–N] n multilayers of nanometric periods were analyzed by AFM in contact mode to measure values of lateral and normal forces. From these measurements, the coefficient of friction (COF) of these materials in contact with the AFM tip was calculated. Measurements were made with three types of silicon tips, diamond-coated, Pt–Cr-coated, and bare silicon. Significant differences between the tip materials in contact with the samples, which affected the COF, were observed. The effect of the environmental layer of water covering the surface sample and the tip appears as the most important factor affecting the tribology behavior of the tip-sample contact. For diamond-coated and bare silicon tips there is an additional adherence force increasing the normal load. But for tips platinum–chromium-coated there is a repulsive force due to this water layer, which behaves as a lubricant layer before a threshold load.  相似文献   

14.
Tip wear of silicon probes used for an atomic force microscope (AFM) is a critical issue. Wear can result in an increase of tip radius and adhesion between tip and sample, thus reducing the image resolution and introducing artifacts. In order to reduce adhesion, friction, and wear so as to reduce tip related artifacts, liquid lubricant (Z-TETRAOL), self-assembled monolayers (pentafluorophenyltriethoxysilane (PFPTES)), and fluorocarbon polymer (Fluorinert™) were applied on the silicon probe. A comprehensive investigation of adhesion, friction, and wear of the uncoated/coated tips in both ambient air and various humidity levels as well as the influence of the coatings on the image resolution was performed. Experiments showed that the coatings reduced the adhesion, friction, and wear of the silicon tip, improved the initial image resolution, and exhibited less deterioration as compared to that of uncoated tip in the long-term test.  相似文献   

15.
Current requirements in automotive lubrication impose extremely complex formulation. For environmental reasons, it is important to reduce or eliminate the presence of sulphur and phosphorus contained in tribological additives. For that purpose, multi-walled carbon nanotubes have been dispersed in oil in various concentrations. The lubrication mechanisms of such dispersions in mixed and EHL regimes have been investigated by means of the IRIS tribometer that allows us simultaneous contact visualization, film thickness and friction measurement under controlled contact kinematics. The lubricant film-forming capability has been determined as a function of the entrainment velocity and the nanotube content: the presence of carbon nanotubes within the contact results in a local increase in the film thickness and it can be shown that the contact acts as a filter of carbon-nanotube aggregates. Introduction of sliding results in a diminution of the number of aggregates passing through the contact. Moreover, a reduction in friction and a drift in the wear onset have been observed under controlled contact kinematics: this behaviour originates from the transient propagation of carbon-nanotube aggregates through the contact and a friction law is proposed taking into account the contact heterogeneity.  相似文献   

16.
The well-known problem of stiction in a magnetic disk drive largely depends on the forces induced by the presence of a thin liquid film. It is commonly recognized that both adhesive and viscous effects contribute to the magnitude of the stiction force, but is is not known what relative roles the two effects have in a lubricated contact. In the present work, the nature of adhesive and viscous effects is investigated for the slider/disk interface under conditions of constant-speed sliding.

Friction measurements are conducted over a range of sliding speeds, 0.25-250 mm/s, with eight perfluoropolyether (PFPE) lubricants applied in various thicknesses, 0-6.6 nm, to carbon-coated magnetic thin-film disks. The lubricants were selected to cover a broad range of viscosities. For several sliding speeds and lubricant film thicknesses, the friction force is found to decrease significantly with increasing sliding speed for all lubricants. In several instances, large friction forces are observed at the lowest sliding speeds, indicating stiction-like behavior, whereas, at higher speeds, the friction is reduced to even below unlubricated friction levels. At the highest film thickness and sliding speed, the friction was found to increase with speed for some lubricants. The implications of these results on current models of lubricant-mediated adhesion are discussed.  相似文献   

17.
Hiratsuka  K.  Asakawa  M.  Funakoshi  A.  Takaya  M. 《Tribology Letters》2002,13(2):77-80
Polyvinyl pyrrolidone-Iodine complex (PVP-I) molecules were impregnated into the anodic oxide of an aluminum disk specimen. It was rubbed against a silicon nitride ball specimen using a ball-on-disk type friction test rig. Over the limited range of parameters studied (load: 0.2-1.0 N, sliding velocity: 0.6 mm/s, and sliding distance: 1-7 m), the coefficient of friction decreased to a value as low as 0.01 from values of 0.3 to 0.7 for the anodic oxide surface. Single-crystal iodine rubbed against silicon nitride showed a coefficient of friction of 0.1. The low coefficient of friction is attributed to the thin PVP-I film on the relatively hard anodic oxide. The mechanism of coefficient of friction reduction is the same as that of a thin soft film on a hard substrate.  相似文献   

18.
Two classes of novel lubricants, perfluoropolyethers (PFPE) and ionic liquids (ILs), were deposited on metal film magnetic tapes. The adhesive force and coefficient of friction of lubricated and unlubricated tapes were investigated at the nanoscale with an atomic force microscope (AFM) as a function of various humidity and temperature conditions. Microscale tests with a ball-on-flat tribometer were also performed in order to study the length-scale effects on friction. Wear at ultralow loads was simulated and the lubricant removal mechanism was investigated by monitoring the friction force, surface potential and contact resistance with the AFM. Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) experiments were conducted to determine the chemical species that affect intermolecular bonding and as an aid in interpreting how the lubricant film tribological properties vary with the environmental conditions. Z-TETRAOL, one of the PFPEs, was found to exhibit the lowest adhesion and friction among the lubricant films studied. The ionic liquid 1,1′-(pentane-1,5-diyl)bis(3-hydroxyethyl-1H-imidazolium-1-yl) di[bis(trifluoromethanesulfonyl)imide)] exhibited comparable nanotribological properties with the PFPEs. This is attributed to the presence of hydroxyl groups at its chain ends, which can hydrogen bond with the surface similar to PFPEs.  相似文献   

19.
Tribological thermostability of carbon film with vertically aligned graphene sheets was studied with annealing temperatures up to 1,750 °C. The carbon film was deposited on silicon carbide substrate by electron cyclotron resonance plasma sputtering. Tribological thermostabilities of the carbon film in terms of friction coefficient, wear life, and nanoscratch depth were investigated by Pin-on-Disk tribometer and atomic force microscopy. The evolution of nanostructure of vertically aligned graphene sheets in the carbon film as a function of annealing temperature was examined by Raman spectroscopy and transmission electron microscopy. The results showed that the friction coefficient, wear life, and nanoscratch depth of the carbon film were thermally stable up to 1,250 °C. When the annealing temperature was 1,500 °C, the friction coefficient and the nanoscratch depth increased, the wear life decreased, but still all were of considerable values. These variations were attributed to the initiation of tubular-like structure originated from graphene sheets stacks. After annealing at 1,750 °C, tribological performances degraded catastrophically due to the abundant formation of tubular-like structures and the appearance of a graphitic interlayer between the film and the substrate.  相似文献   

20.
The geometrical microstructure together with the chemical composition of the surface governs the wettability of solid surfaces, which is very important in the study of nanoadhesion and nanofriction properties of surfaces. Multiply alkylated cyclopentane(MAC), a novel hydrocarbon mobile lubricant, was deposited on silicon by a dip-coating method. In order to investigate the influence of the surface microstructures on the wettability of MACs, silicon substrates were treated by different cleaning and etching processes. Measurements of an atomic force microscope and a contact angle meter indicate that the wettabilities of MACs on the hydroxylated silicon and the hydrogenated silicon are better than the wettability on the cleaned silicon, and that superiority is mainly caused by topological structure changes of the surface. Furthermore, the nanoadhesion and nanofriction properties were investigated. The different behaviors in adhesion and friction forces are due to the different surface energies of these silicon substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号