共查询到20条相似文献,搜索用时 93 毫秒
1.
《计算机应用与软件》2015,(12)
为了提高网络入侵的检测率,以降低误检率,提出一种基于均值聚类分析和多层核心集凝聚算法相融合的网络入侵检测模型。利用K-Means算法获取多层核心集凝聚算法的核心集,用其替代原粗化过程得到的顶层核心集,实现顶层核心集的快速准确定位,简化算法的计算复杂性。将KM-Mul CA算法应用到入侵检测模型,采用KDD CUP 99数据集进行仿真实验。结果表明,该模型可以获得理想的网络入侵检测率和误检率。 相似文献
2.
人工鱼群和K均值算法相融合的网络入侵检测 总被引:1,自引:0,他引:1
针对K均值算法存在的初始聚类中心敏感和易陷入局部最优等缺陷,利用人工鱼群算法全局寻优能力,提出一种人工鱼群和K均值算法相融合的网络入侵检测模型(AFSA-KCM).首先采用抽样技术和最大最小距离算法获得一组较优的聚类中心和聚类数目,然后通过人工鱼群模拟自然界鱼群的觅食、聚群,追尾等行为,找到最优的聚类中心和聚类数目,最后利用K均值算法根据最优的聚类中心和聚类数目建立最优的入侵检测模型,并采用KDD CUP99数据集进行测试实验.实验结果表明,相对于其它入侵检测模型,AFSA-KCM不仅提高了网络入侵检测率,同时加快了网络入侵检测速度,可以为网络安全入侵检测提供有效保证. 相似文献
3.
为了提高网络入侵检测率,提出一种反向学习粒子群算法和多层次分类器相融合的网络入侵检测模型。首先将反向学习粒子群算法优化最小二乘支持向量机,以提高分类性能;然后利用由粗到精策略构造多层的网络入侵分类器降低计算时间杂度复;最后采用KDD 99数据集进行仿真测试。仿真结果表明,相对于其他检测模型,该模型不仅提高了网络入侵检测率,降低了入侵检测误报率,同时加快了入侵检测速度,为网络安全提供了有效保证。 相似文献
4.
在K均值算法基础上,提出了改进的K均值算法(K+均值)。此方法计算每个数据对象所在区域的密度选择相互距离,最远的k个处于高密度区域的点作为初始聚类中心。将K均值算法和K+均值算法分别应用于入侵检测,试验结果表明:K+均值算法能够避免K均值算法固有的缺点,并且有比较高的检测性能。 相似文献
5.
针对传统K均值聚类算法全局搜索能力差、需要设定初始聚类个数等问题,提出一种结合新型布谷鸟搜索(CS)算法和自适应K均值算法的入侵检测模型(NCS-AKM),为提高布谷鸟搜索算法的种群多样性,引入类似差分进化策略有选择地对种群进行变异重组。利用KDD Cup99数据集构造训练数据和包含4个阶段的在线测试数据,在第3、4阶段分别引入新的攻击。结果表明,该检测模型能够准确地识别出新入侵,对测试集中4种攻击类型的总体检测率高达83.4%(各阶段:70.8%~89.9%),误报率为6.3%(各阶段:3.0%~11.5%),具有较高的检测性能和具有说服力的聚类结果。 相似文献
6.
k均值聚类算法在入侵检测中已经得到了广泛的研究。该文在k均值算法基础上,提出了改进的k均值算法。将k均值算法和改进的k均值算法分别应用于入侵检测。试验结果表明,改进后的k均值算法能够避免k均值算法固有的缺点,并且有比较高的检测性能。 相似文献
7.
传统的网络入侵检测方法存在着检测率低和无法进行在线检测的问题,为此设计了一种基于节点生长马氏距离K均值和HMM的网络入侵检测方法;首先,给出了入侵检测系统框图,然后,以马氏距离为评价准则,提出了一种节点根据距离阈值进行自适应生长的K均值算法以实现样本的聚类,得到样本属于各攻击类型的后验概率,并采用此后验概率来初始化HMM中的初始矢量分布、状态转移概率和观察值概率等参数,通过前向评估准则和后向评估准则对HMM模型进行训练,从而获得了HMM检测模型,将样本输入到各检测模型中并将概率最大的检测模型作为其攻击类型;仿真试验表明所提方法能有效地实现网络入侵检测,不仅具有较高的检测率,而且具有较低的误检率和漏检率,是一种有效的网络入侵检测方法。 相似文献
8.
针对传统的入侵检测模型IDM(Intrusion Detection System)不能检测最新的入侵手段且系统的特征数据库需要频繁更新的问题,提出融合K-均值聚类、模糊神经网络和支持向量机等数据挖掘技术来构建IDM。首先,利用K-均值聚类将原始的训练集划分为不同的训练子集;然后,基于各训练子集训练各自的模糊神经网络模型,并通过模糊神经网络模型生成支持向量机的支持向量;最后,采用径向支持向量机检测入侵行为是否发生。在KDD CUP 1999数据集上的实验验证了所提模型的有效性及可靠性。实验结果表明,相比其他几种较为先进的检测方法,所提模型在入侵检测方面取得了更高的检测精度。 相似文献
9.
针对大数据量的入侵检测算法计算复杂度过高的问题,提出一种基于信息熵rough set的多层凝聚入侵检测算法。首先,利用粗糙集对入侵检测数据进行预处理和属性约简,防止算法陷入“维数陷阱”;其次,用粗糙集熵重要测度权重距离代替多层凝聚算法的欧式距离计算个体相似度,实现粗糙集预处理与多层凝聚算法的对接;最后,通过实验表明,基于信息熵rough set的多层凝聚入侵检测算法能够更有效的对入侵数据进行检测。 相似文献
10.
11.
12.
入侵检测技术作为一种主动的网络安全防护技术越来越引起研究者的关注,该文以k-means算法为基础,对基于k-means算法的入侵检测系统进行了研究和分析,指出了传统k-means算法的不足,提出了相应的改进策略,在此基础上完成基于k-means改进算法的入侵检测系统的研究。 相似文献
13.
针对支持向量机参数优化问题,为了提高网络入侵检测率,提出一种变异蚁群算法优化支持向量机的网络入侵检测模型(MACO-SVM)。首先采用蚁群搜索路径节点代表支持向量机参数,并将网络入侵检测率为目标函数,然后通过蚁群算法的全局寻优能力和反馈机制寻找最优参数,并对蚂蚁进行高斯变异,克服蚁群陷入局部极值,最后将最优路径上的节点连接起来得到 SVM的最优参数,建立最优网络入侵检测模型。采用KDD99数据集对模型进行仿真实验,仿真结果表明,MACO-SVM的网络入侵检测速度要快于其它网络入侵检测模型,而且提高了网络入侵检测率。 相似文献
14.
网络入侵检测一直是网络安全领域中的研究热点,针对分类器参数优化难题,为了提高网络入侵检测准确性,提出一种改进粒子群算法和支持向量机相融合的网络入侵检测模型(IPSO-SVM).首先将网络入侵检测率作为目标函数,支持向量机参数作为约束条件建立数学模型,然后采用改进粒子群算法找到支持向量机参数,最后采用支持向量机作为分类器建立入侵检测模型,并在Matlab 2012平台上采用KDD 999数据进行验证性实验.结果表明,IPSO-SVM解决了分类器参数优化难题,获得更优的网络入侵分类器,提高网络入侵检测率,虚警率和漏报率大幅度下降. 相似文献
15.
入侵检测实质上是一个分类的问题,对于提高分类精度是十分重要的.支持向量机(SVM)是一个功能强人的用于解决分类问题的工具.基于支持向量机的入侵检测精度较高,但如何获得更高的精度是一个新的问题.本文利用基于支持向量机和遗传算法(GA)的入侵检测来解决这些问题.我们首先利用遗传算法进行特征选择及优化,然后使用支持向量机模型... 相似文献
16.
入侵检测系统(IDs)作为一种新兴的安全技术得到了广泛的应用。提出了一种基于多级支持向量机的网络入侵检测模型。用支持向量机(SVM)精确的二类分类功能,建立多级分类器对网络入侵行为分别检测出拒绝服务攻击、预攻击探测、未授权的尝试访问及其他可疑活动,入侵检测实验的结果表明了该方法不仅检测准确性高,而且有较快的训练与检测速度,同时表明了该方法的有效性。 相似文献
17.
为了提高网络入侵检测的准确性与检测效率,弥补由单一优化算法带来的计算精度低、易陷入局部极值等不足,将差分算法的思想引入量子粒子群算法中,提出了一种改进量子粒子群算法(Improved Quantum Particle Swarm Optimization algorithm,IQPSO)和改进差分算法(Improved Difference Evolution,IDE)相融合的IQPSO-IDE算法,并将IQPSO-IDE算法对支持向量机(Support Vector Machine,SVM)的参数进行优化。以此为基础,设计了一种基于IQPSO-IDE算法的网络入侵检测方法。实验结果表明,IQPSO-IDE算法与传统的QPSO、GA-DE、QPSO-DE算法相比,不仅在效率上有了明显的改善,而且在网络入侵检测的正确率上分别提高了5.12%、3.05%、2.26%,在误报率上分别降低了3.31%、1.54%、0.93%,在漏报率上分别降低了1.26%、0.73%、0.52%。 相似文献
18.
19.
互联网快速发展使得网络空间越来越复杂,网络入侵导致网络安全问题备受关注。为提升网络入侵的检测效率和精度,构建了基于支持向量机的网络入侵检测模型。支持向量机模型的惩罚系数和核函数参数直接影响入侵模型的检测精度,采用麻雀搜索算法对惩罚系数和核函数参数进行优化,提出了基于麻雀搜索算法和支持向量机的网络入侵检测模型。将提出的网络入侵检测模型应用于实际的网络入侵检测中,并与PSO-SVM和SVM模型进行对比。结果表明,所提出的网络入侵检测模型能够有效降低网络入侵的误报率,这对确保网络安全具有一定的现实意义。 相似文献