首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
岩石动力学实验及其在油田开发中的应用   总被引:4,自引:4,他引:0  
评述了岩石动力学实验方法的进展,介绍了常用的岩石力学动载实验方法间接法的声波法和霍普金森法,直接法的液压加载法和落锤加载法等。进一步讨论了动载下岩石压胀参数的测定,压胀参数在水力压裂设计中的应用,阐述了基于压胀机理的油气田压胀松动增产技术。  相似文献   

2.
通过岩芯静态酸蚀试验并结合矿物微观组构分析和岩石力学特性试验,从不同尺度和性质研究了酸液对碳酸盐岩储层岩石力学特性损伤问题及其规律,并通过压裂室内模拟试验研究了裂缝起裂和扩展演化规律以及酸液化学作用对体积缝的影响。该研究有助于指导现场储层酸压改造设计及优化技术参数,对于提高碳酸盐岩储层深度酸压增产改造技术具有重要的工程意义。试验结果表明:酸液对碳酸盐岩试样主要以表面溶蚀为主,微细观结构形成了溶蚀缝洞和微裂隙,矿物含量方解石由73.43%减至47.51%,方解石含量高且易酸化,属可压性较高储层;酸液对岩石物理力学特性劣化衰减具有明显的时间效应,酸岩反应后试样纵波波速迅速降低,岩石单轴抗压强度和弹性模量均随酸化时间增长而降低,破坏模式仍呈现拉伸劈裂破坏,但破坏方式有脆性向延性转化的趋势;碳酸盐岩水力压裂和酸化压裂的泵注压力随时间演化和声发射特征具有一定的相似性,但酸压裂缝更为复杂,裂缝表现出粗糙的溶蚀孔缝,且酸压起裂泵压明显小于水压起裂泵压。  相似文献   

3.
页岩水力压裂物理模拟与裂缝表征方法研究   总被引:3,自引:2,他引:3  
 采用真三轴岩土工程模型试验机、压裂泵伺服控制系统、Disp声发射三维空间定位技术、试验前后工业CT扫描水力压裂缝扩展形态的方法,建立一套页岩水力压裂物理模拟与压裂缝表征方法。由页岩水力压裂物理模拟试验可得:(1) 采用Disp声发射八探头三维空间定位监测方法,能实时有效地监测水力压裂缝的起裂位置;(2) 采用水力压裂后追踪红色示踪剂痕迹的方式,可实现水力压裂缝的空间形态描述;(3) 当水力压裂未形成沿天然层理面的贯通压裂缝时,易形成与天然层理面相交的压裂缝,并与层理面开裂后交叉形成网络裂缝。建立的页岩水力压裂物理模拟试验与表征方法,可进行页岩压裂施工参数的优化设计,为页岩气储层水力压裂开采提供技术支持。  相似文献   

4.
页岩气储层变排量压裂的造缝机制   总被引:1,自引:0,他引:1  
侯冰  陈勉  程万  谭鹏 《岩土工程学报》2014,36(11):2149-2152
裂缝性页岩储层压裂时,如何通过调节压裂泵排量,使水力裂缝沟通更多天然裂缝,是缝网压裂的关键。选取龙马溪组页岩露头开展真三轴水力压裂试验,压裂过程中以逐步阶梯式方式提高排量,实时分析变排量压裂时水力裂缝扩展行为以及与天然裂缝的沟通情况。试验结果表明:采用变排量压裂,初始阶段,随着压力逐渐升高,会在井筒周围的弱面附近产生多个待破裂点,随排量突然提高会使水力裂缝沿着多个破裂点动态分叉扩展。随着排量阶梯式升高,泵压明显升高,排量越大,泵压波动越大,水力裂缝与天然裂缝沟通形态越复杂,天然裂缝产状和缝内净压力等影响到水力裂缝进一步沟通程度。试验结果证实,变排量压裂可以激活更多天然裂缝,有助于形成复杂裂缝网络。  相似文献   

5.
页岩水力压裂水力裂缝与层理面扩展规律研究   总被引:2,自引:2,他引:0  
在对含天然层理弱面页岩进行水力压裂过程中,水力主裂缝的起裂、扩展及层理面的扩展对缝网的形成有重要影响。为研究水力主裂缝的起裂、扩展规律和层理面对水力裂缝扩展的影响,开展真三轴试验条件下的水力压裂试验,采用声发射系统监测水力压裂过程,并在试验后对试样进行剖切与CT扫描;同时进行定量的理论分析,并通过试验结果验证。研究表明:(1)起裂方向由初始角度转至最大水平主应力方向;垂向应力与水平最大主应力相差极小时,各个方向起裂压力相差极小,裂缝很快转向最大水平主应力方向。(2)水力主裂缝整个扩展过程中所需水压区间与裂缝长度、断裂韧性值相关。(3)形成由层理面与主裂缝构成的网状的裂缝系,层理面在主裂缝的靠近过程中张开区的长度极小,主要在主裂缝接触到层理面后产生较大的张开区与剪切区,层理面的剪切区域长度远大于张开区域长度,剪切区域提供主要的导流通道;剪切区的长度对层理面黏聚力c和水力裂缝与层理面交角?参数敏感性很高。研究结果可以为压裂模型的建立提供几何参数,并对施工参数的设计有指导意义。  相似文献   

6.
深部储层含有大量的天然裂缝、断层、层理等各种不连续界面,这些界面直接影响并制约了水力压裂缝网形成及应用效果。从水力压裂试验、理论及数值模拟3个方面系统分析含界面储层的水力压裂研究进展。首先,梳理了水力压裂物模试验研究进展,探讨了不同含界面储层水力压裂物模试验方法,如加载方式、试样制备、监测手段。其次,基于含界面试样压裂物模试验结果,分析了水力裂缝与界面相互作用理论及影响缝网压裂效果的关键因素。然后,从水力裂缝与界面相互作用数值模拟的难点入手,重点阐述了裂缝交叉处理过程,水力裂缝与界面相互作用及压裂缝网形成机制数值模拟研究进展。最后,总结现阶段含界面储层水力压裂研究中存在的问题及发展趋势。  相似文献   

7.
本文主要采用的是大尺寸的三轴试验系统对页岩进行水力压裂的裂缝扩展实验,通过对压裂后裂缝延伸路径的观察,结合页岩内部实际水力压裂裂缝经过工业CT的扫描,研究出了各种外界因素对页岩压裂裂缝扩展规律的影响。从研究的结果中可以看出,对缝网复杂度的影响排量起到了一定的作用;应力差越大,也就是主裂缝与更多的天然裂缝相连,使缝网更加复杂;岩层的层理和胶结构强度等都会影响到压裂缝网的复杂度;水力压裂可能会使页岩层理分张,形成水平缝与垂直缝的交叉,产生体积裂缝缝网。  相似文献   

8.
定向水力压裂控制煤矿坚硬难垮顶板试验   总被引:6,自引:2,他引:4  
 针对煤矿坚硬难垮顶板控制的研究现状及存在的问题,进行定向水力压裂控制煤矿坚硬难垮顶板井下试验。通过在压裂孔两侧布置监测孔和在压裂过程中实时监测泵压变化,深入分析煤矿坚硬难垮顶板水力压裂特点。试验结果表明:(1) KZ54型切槽钻头能够在坚硬岩层中预制横向切槽,可有效降低裂缝破裂所需压力;(2) 采用跨式膨胀型封隔器可对岩层坚硬段分段逐次压裂,压裂过程中可在顶板中产生多条裂缝,从而有效弱化顶板;(3) 随着压裂处与孔口距离的增大,裂缝破裂和扩展所需的压力也相应增大,裂缝的扩展半径最大可达20 m;(4) 在压裂过程中,由于岩层均匀性、渗透性、地应力场、岩层结构面等影响因素的变化,压力–时间曲线呈现出多种形态;(5) 岩石抗拉强度与地应力值较为接近时,岩石强度对水力压裂有较大影响。  相似文献   

9.
水力压裂调研结果认为,地下岩体中所含随机分布孔隙能够影响水力压裂的造缝过程。将多孔岩石的孔隙简化成规则排列的球形孔洞,采用渐近均匀化方法建立了等效弹性常数随孔隙比变化的关系;与基于Budiallsky自治理论得到的有效弹性常数进行比较,两曲线能较好地吻合;为水力压裂法准确地预测出水力压裂的造缝结果提供了可行方案。  相似文献   

10.
由地面压裂施工压力资料反求储层岩石力学参数   总被引:7,自引:0,他引:7  
应用常规的地面压裂施工压力资料和前置液阶段的瞬时停泵压力测试等资料,初步探讨了求取储层原位岩石力学参数的新方法.该方法首先是由地面施工压力计算井底压力,井由井底压力的增长模式确定裂缝的扩展形态(为简单起见,文中仅假设为PKN模型和KGD模型2种).然后,根据裂缝形态的不同,确定相应的计算公式。其实质就是利用裂缝宽度既与杨氏模量相关,又与裂缝净压力相关的特点,建立不同时间的井口压力与杨氏模量间的对应关系曲线.同时,利用泊松比与最小水平主应力的相关式,由最小主应力的变化曲线,求出了泊松比的变化曲线.经其他可靠手段验证,该方法计算结果可靠,且简单易行,便于现场推广应用.既可用于压裂的实时分析,也可用于压后评估分析.所以,该方法对提高水力压裂的优化设计水平,具有一定的参考价值.  相似文献   

11.
应变敏感的裂隙及裂隙岩体水力传导特性研究   总被引:1,自引:2,他引:1  
通过将岩体单裂隙视为非关联理想弹塑性体,导出单裂隙在压剪荷载作用下,其机械开度和水力传导度的解析模型,并采用已有相关试验研究成果对解析模型进行验证。在此基础上,通过将岩体概化为含一组或多组优势裂隙的等效连续介质,给出一种描述裂隙岩体在复杂加载条件下考虑非线性变形特征及滑动剪胀特性的等效非关联理想弹塑性本构模型。基于该模型,给出裂隙岩体在扰动条件下应变敏感的渗透张量的计算方法,该计算方法不仅考虑裂隙的法向压缩变形,而且反映材料非线性及峰后剪胀效应对裂隙岩体渗透特性的影响。该模型通过引入滑动剪胀角和非关联理想塑性,较为逼真地反映了真实裂隙及裂隙岩体峰后的剪胀特性、变形行为和水力传导度变化特征。通过数值算例,研究了裂隙岩体在力学加载及开挖条件下渗透特性的演化规律。  相似文献   

12.
水力压裂裂缝穿层及扭转扩展的三维模拟分析   总被引:1,自引:0,他引:1  
 应用并行有限元程序对水力压裂过程进行真三维数值模拟,实现对压裂裂缝起裂、扩展及扩展中的穿层、扭转行为的全过程分析;数值计算中无需假定压裂裂缝的起裂位置和扩展路径,即可根据实际岩体水力学模型的力学、水力学等边界条件,自动标定出压裂裂缝的三维扩展模式,并显示出该并行有限元程序对复杂地质力学条件下水力压裂过程三维模拟分析的适用性。通过对压裂裂缝扩展过程中孔隙压力分布、裂缝几何形状和尺寸的演化进行了解读,显示出压裂裂缝的扩展模式与地层分布密切相关。当生产层很薄或生产层与上下阻挡层岩性差别较大时,裂缝穿层现象突出,可能会出现压裂实际缝长远远小于设计缝长的现象;近场地应力差异、地层分布特征及岩体细观非均匀性都有可能诱发压裂裂缝扭转扩张。分析结果对水力压裂施工设计具有一定的参考价值。  相似文献   

13.
自然营造力作用下岩石单裂纹水力劈裂数值仿真模型   总被引:1,自引:0,他引:1  
考虑水利水电工程中自然营造力作用下岩石水力劈裂特点,建立裂纹内初始含水量饱和而外界水压增大情况下,裂纹进一步发生水力劈裂的数值仿真模型。在数值模型中,通过半解析半数值方法建立裂纹内水压分布梯度与裂纹张开位移间的耦合关系,不仅简化耦合迭代分析,而且提高计算精度;断裂力学模型采用以Hillerborg黏滞区裂纹模型为基础的COD准则,并引入损伤变量对其开裂准则进行修正;裂纹的扩展采用预置零厚度接触单元的方法巧妙地解决耦合与非线性迭代中裂纹的前进与后退问题。最后,对简单的岩石试件进行水力劈裂过程数值仿真分析,得到的裂纹内水压分布规律与已有的试验结果吻合,证明所建模型是合理的,计算结果是可靠的。  相似文献   

14.
This paper presents an improved understanding of coupled hydro-thermo-mechanical(HTM) hydraulic fracturing of quasi-brittle rock using the bonded particle model(BPM) within the discrete element method(DEM). BPM has been recently extended by the authors to account for coupled convective econductive heat flow and transport, and to enable full hydro-thermal fluidesolid coupled modeling.The application of the work is on enhanced geothermal systems(EGSs), and hydraulic fracturing of hot dry rock(HDR) is studied in terms of the impact of temperature difference between rock and a flowing fracturing fluid. Micro-mechanical investigation of temperature and fracturing fluid effects on hydraulic fracturing damage in rocks is presented. It was found that fracture is shorter with pronounced secondary microcracking along the main fracture for the case when the convectiveeconductive thermal heat exchange is considered. First, the convection heat exchange during low-viscosity fluid infiltration in permeable rock around the wellbore causes significant rock cooling, where a finger-like fluid infiltration was observed. Second, fluid infiltration inhibits pressure rise during pumping and delays fracture initiation and propagation. Additionally, thermal damage occurs in the whole area around the wellbore due to rock cooling and cold fluid infiltration. The size of a damaged area around the wellbore increases with decreasing fluid dynamic viscosity. Fluid and rock compressibility ratio was found to have significant effect on the fracture propagation velocity.  相似文献   

15.
裂隙岩体水力学特性研究   总被引:6,自引:1,他引:5  
 基于裂隙中的水流运动规律,通过现场压水试验,研究裂隙岩体的渗透特性及其高压渗透特性,重点分析其水力学特性的应力相关性。试验研究表明,裂隙岩体的渗透性与应力赋存环境密切相关,且对应力十分敏感;裂隙岩体的应力环境、水力劈裂压力及裂隙充填情况不同,其高压渗透特性有较大差异。同时,通过总结前人的研究成果并结合数值试验分析,从裂隙岩体渗流的非连续性、非均质性、各向异性、优势水力特性及尺寸效应等多方位描述裂隙岩体的水力学特性,对其水力学特性及其成因进行综合评述。  相似文献   

16.
中国深层岩石力学研究及在石油工程中的应用   总被引:6,自引:1,他引:6  
论述了深层岩石力学的研究范围、特点,介绍了深层岩石力学的全尺寸钻井模拟试验,地应力、岩石断裂韧性、动静态岩石力学参数获取方法和技术,以及在钻井过程中的井壁稳定预测检测技术、水力压裂的室内物理模拟技术、数值模拟技术等问题的研究进展,并提出了深层岩石力学面临的挑战和需要解决的技术问题。  相似文献   

17.
模拟水压致裂的二维FDEM-flow方法   总被引:1,自引:0,他引:1  
 水压致裂在非常规天然气开采中被广为采用,对该问题的研究具有重要意义。基于FEM/DEM耦合分析方法,提出解决FEM/DEM方法中流–固耦合问题的理论框架,称之为FDEM-flow方法,并结合贯通节理裂隙网络形成的递归搜索算法,为在二维情形下考虑流–固耦合驱动下的岩体破裂问题提供完整的解决方案,并给出实现流–固耦合的整个计算流程。通过2个含有解析解的裂隙渗流算例,验证本文提出方法求解纯裂隙渗流问题的正确性。最后,通过一个流体驱动下的岩体破裂算例,展现提出的方法在模拟流–固耦合驱动下的岩体破裂问题的巨大潜力,为模拟页岩气开采中的水压致裂问题提供了新途径。  相似文献   

18.
水力致裂法测定分形裂纹下岩石的断裂韧性   总被引:1,自引:0,他引:1  
 引入分形几何理论,应用分形方法来描述岩石断裂裂纹的曲折形态,进而建立分形裂纹下的岩石断裂韧性理论模型。在此基础上,应用自主研制的内压法岩样断裂韧性测试系统对不同假设条件下的岩石断裂韧性进行测定。结果表明,分形裂纹模型测试得到的岩石断裂韧性大于直线模型的断裂韧性,这也从理论上证实了目前水力压裂作业中理论计算值常低于施工压力的结论,说明应用该文的模型计算结果更接近实际情况。  相似文献   

19.
Penetration rates during excavation using hard rock tunnel boring machines (TBMs) are significantly influenced by the degree of fracturing of the rock mass. In the NTNU prediction model for hard rock TBM performance and costs, the rock mass fracturing factor (ks) is used to include the influence of rock mass fractures. The rock mass fracturing factor depends on the degree of fracturing, fracture type, fracture spacing, and the angle between fracture systems and the tunnel axis. In order to validate the relationship between the degree of fracturing and the net penetration rate of hard rock TBMs, field work has been carried out, consisting of geological back-mapping and analysis of performance data from a TBM tunnel. The rock mass influence on hard rock TBM performance prediction is taken into account in the NTNU model. Different correlations between net penetration rate and the fracturing factor (ks) have been identified for a variety of ks values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号