首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Sequential dissociation of the two Ca2+ ions bound to non-phosphorylated sarcoplasmic reticulum Ca2+-ATPase was triggered by addition, in a stopped-flow experiment, of quin2, which acted both as a high-affinity chelator and as a Ca2+-sensitive fluorescent probe. The kinetics of Ca2+ dissociation were deduced from the observed changes in quin2 fluorescence in the visible region (with lambdaex = 313 nm), while fluorescence detection in the UV region (with lambdaex = 290 nm) made it possible to monitor the tryptophan fluorescence changes accompanying this dissociation under the same ionic conditions. In the absence of KCl or NaCl, at pH 6 or 7, the observed changes in quin2 fluorescence were monoexponential, with rate constants very close to those of the changes in ATPase tryptophan fluorescence, which also appeared monophasic. In the presence of 100 mM KCl, quin2 fluorescence changes, although still monoexponential, were faster than in the absence of the monovalent ions but distinctly slower than the changes in tryptophan fluorescence, which were accelerated to a larger extent. In addition, the apparent kinetics of the Trp fluorescence changes depended on the excitation wavelength. Using an excitation wavelength of 296 nm, the Trp fluorescence drop was still faster than with an excitation wavelength of 290 nm, and in the presence of NaCl it even displayed a clear undershoot. We conclude that in the presence of KCl or NaCl and with an excitation wavelength of 290 nm, the rapid drop in tryptophan fluorescence mainly monitors the dissociation of the first of the two Ca2+ ions to be released from Ca2+-ATPase, while excitation at 296 nm optically selects a subpopulation of Trp residues whose fluorescence level is lower in the ATPase species with one Ca2+ ion bound than in the Ca2+-deprived ATPase species. The latter conditions result in an initial drop in Trp fluorescence whose apparent rate constant (in single-exponential analysis) is faster than the true rate of dissociation of the first Ca2+ ion and in a subsequent slower rise related to dissociation of the second Ca2+ ion. The difference between results obtained in the absence and in the presence of K+ or Na+ is due to an antagonizing effect of these cations on proton-induced conformational rearrangement of Ca2+-free ATPase, a conformational rearrangement which changes the ATPase Trp fluorescence level and significantly affects the cooperativity of Ca2+ binding at equilibrium.  相似文献   

2.
The ars operon of plasmid R773 confers resistance to antimonials and arsenicals in Escherichia coli by encoding an ATP-dependent extrusion system for the oxyanions. The catalytic subunit, the ArsA protein, is an ATPase with two nucleotide binding consensus sequences, one in the N-terminal half and one in the C-terminal half of the protein. The ArsA ATPase is allosterically activated by tricoordinate binding of As(3+) or Sb(3+) to three cysteine thiolates. Previous measurements suggested that the intrinsic fluorescence of tryptophans might be useful for examining binding of Mg2+ ATP and antimonite. In the present study an increase in intrinsic tryptophan fluorescence was observed upon addition of Mg2+ ATP. This enhancement was reversed by addition of antimonite. The ArsA protein contains four tryptophan residues: Trp159, Trp253, Trp522, and Trp524. The first two were altered to tyrosine residues by site-directed mutagenesis. Cells expressing both the arsAW159Y and arsAW253Y mutations retained resistance to arsenite, and the purified W159Y and W253Y proteins retained ATPase activity. While the intrinsic tryptophan fluorescence of the W253Y protein responded to addition of Mg2+ ATP, intrinsic tryptophan fluorescence in the purified W159Y protein was no longer enhanced by substrate. These results suggest that Trp159 is conformationally coupled to one or both of the nucleotide binding sites and provides a useful probe for the interaction of effector and substrate binding sites.  相似文献   

3.
We have generated a series of chicken skeletal muscle troponin C mutants to study the conformation of the regulatory domain in the N-terminal half of the molecule. These mutants each contained a single Trp at position 22 (helix A), 52 (linker of helices B and C), or 90 (central helix). Some of these mutants also contained additional mutations to introduce a single Cys at a desired position. The mutants were characterized by molecular graphics and CD and found to have a minimum of structural perturbations when compared with the native structure. They also retained the ability to regulate myofibrillar ATPase activity. The fluorescence of Trp22 was sensitive to Ca2+ binding only to the regulatory sites, whereas Trp52 and Trp90 responded to Ca2+ binding to both the regulatory and the Ca2+/Mg2+ sites. The tryptophan quantum yield (Q) of all Trp22-containing mutants was very high (0.33) in the absence of bound Ca2+, compared to that of L-tryptophan in aqueous solution (0.14). Q decreased 25% upon binding of Ca2+ to the regulatory sites. The quantum yields of Trp52 and Trp90 in apo mutants were close to 0.14. In the presence of bound Ca2+ at the regulatory sites, the quantum yield of Trp52 decreased 16%, whereas that of Trp90 increased 25%. Results from acrylamide quenching of the fluorescence of the three Trp residues indicated that Trp22 was the least exposed and Trp52 was the most exposed, consistent with other spectral data that Trp22 was in a relatively nonpolar environment and Trp52 was in a highly polar environment. The ability of Trp52 and Trp90 to sense Ca2+ binding to sites located at both domains suggests inter-domain communication in the protein. These single Trp TnC mutants provide specific signals for probing Ca2+-induced conformational changes in the regulatory domain.  相似文献   

4.
3H-Labeled 9-methyl-7-bromoeudistomin D ([3H] MBED), the most powerful inducer of Ca2+ release from sarcoplasmic reticulum (SR), was successfully prepared with a high specific activity of 10.2 Ci/mmol. [3H]MBED bound to terminal cisternae (TC) of skeletal muscle SR in a replacable and saturable manner, indicating the existence of its specific binding site. Caffeine inhibited the [3H]MBED binding to the TC-SR membranes from skeletal muscle with an IC50 value of 0.8 mM, in close agreement with a concentration that causes Ca2+ release from SR. Scatchard analysis gave values of KD = 40 nM and Bmax = 10 pmol/mg protein. The KD value was increased by caffeine, while that of Bmax was not changed, indicating a competitive mode of inhibition. Adenosine 5'-(beta, gamma-methylene)triphosphate enhanced [3H]MBED binding, but ryanodine and Ca2+ did not affect it. [3H]MBED binding to TC-SR membranes was inhibited by procaine, a representative blocker of Ca(2+)-induced Ca2+ release channels, whereas that was not changed by Mg2+, suggesting that procaine but not Mg2+ may exert its inhibitory effect on Ca(2+)-induced Ca2+ release by affecting the caffeine-binding sites. These results suggest that MBED shares the same binding site as that of caffeine in TC-SR. The [3H]MBED is the first radiolabeled ligand for caffeine-binding sites in Ca2+ release channels and thus may provide an essential biochemical tool for elucidating this site.  相似文献   

5.
Reaction between horse plasma gelsolin and fluorescein-5-isothiocyanate (FITC) resulted in incorporation of 4.8 +/- 0.6 fluorescein groups/gelsolin molecule. The sites of modification were not clustered in any one portion of the gelsolin polypeptide chain; all major peptides produced by proteolytic digestion with alpha-chymotrypsin exhibited a fluorescence characteristic of fluorescein. FITC-gelsolin has a peptide-backbone circular dichroism spectrum at 20 degrees C that is indistinguishable from that of native gelsolin, but FITC-gelsolin is considerably more resistant than native gelsolin to thermally induced precipitation. FITC-gelsolin is fully able to carry out severing of F-actin filaments, the prime function of gelsolin in plasma. An opening up of the structure of gelsolin on binding Ca2+ is evident from an increased susceptibility of FITC-gelsolin to quenching by I-. Ca2+ dependence of the interaction between gelsolin and actin is evident in titrations both of intensity and polarization of the fluorescence of FITC-gelsolin solutions. A Ca(2+)-sensitive interaction between gelsolin and tropomyosin also is observed.  相似文献   

6.
A method for evaluating a physiologically relevant ion selectivity of Ca2+ signaling pathways in biological cells based on a Ca(2+)-dependent on/off switch for cellular processes via calmodulin (CaM) chemistry is described. CaM serves as a primary ion receptor for Ca2+ and a given CaM-binding peptide as a target for a CaM-Ca2+ complex. Upon accommodating four Ca2+ ions in its binding sites, CaM undergoes a conformational change to form a CaM-Ca(2+)-target peptide ternary complex. This Ca(2+)-induced selective binding of the Ca(2+)-CaM complex to the target peptide was monitored by a surface plasmon resonance (SPR) technique. As a target peptide, a 26-amino acid residue of M13 derived from skeletal muscle myosin light-chain kinase was used. The target peptide was covalently immobilized in the dextran matrix on top of gold, over which sample solutions containing Ca2+ and CaM were injected in a flow system. Ca(2+)-dependent SPR signals were observed for Ca2+ concentrations from 3.2 x 10(-8) to 1.1 x 10(-5) M and it leveled off. The observed SPR signals were explained as due to an increase in the refractive indexes caused by a Ca2+ ion-switched protein/ peptide interaction, i.e., Ca2+ ion to CaM and subsequent additional binding of the thus formed complex with immobilized M13. No SPR signals were however, induced by Mg2+, K+, and Li+ at concentrations as high as 1.0 x 10(-1) M; these results and previous spectroscopic data taken together conclude that these ions do not induce CaM/peptide interaction. Large changes in SPR signals were observed with a Sr2+ ion concentration over 5.1 x 10(-4) M; Sr2+ ion behaved in this case as a strong agonist toward the Ca(2+)-dependent on/off switch of CaM. The present system thus exhibited "physiologically more relevant" ion selectivity in that relevant metal ions could switch on the CaM/peptide or -protein interaction rather than merely be bound to CaM causing no further signal transduction. The potential use of this finding for more widely evaluating cation selectivity toward the Ca2+ signaling process was discussed.  相似文献   

7.
ATP hydrolysis by Na+/K+-ATPase proceeds via the interaction of simultaneously existing and cooperating high (E1ATP) and low (E2ATP) substrate binding sites. It is unclear whether both ATP sites reside on the same or on different catalytic alpha-subunits. To answer this question, we looked for a fluorescent label for the E2ATP site that would be suitable for distance measurements by F?rster energy transfer after affinity labeling of the E1ATP site by fluorescein 5'-isothiocyanate (FITC). Erythrosin 5'-isothiocyanate (ErITC) inactivated, in an E1ATP site-blocked enzyme (by FITC), the residual activity of the E2ATP site, namely K+-activated p-nitrophenylphosphatase in a concentration-dependent way that was ATP-protectable. The molar ratios of FITC/alpha-subunit of 0.6 and of ErITC/alpha-subunit of 0.48 indicate 2 ATP sites per (alpha beta)2 diprotomer. Measurements of F?rster energy transfer between the FITC-labeled E1ATP and the ErITC-labeled or Co(NH3)4ATP-inactivated E2ATP sites gave a distance of 6.45 +/- 0.64 nm. This distance excludes 2 ATP sites per alpha-subunit since the diameter of alpha is 4-5 nm. F?rster energy transfer between cardiac glycoside binding sites labeled with anthroylouabain and fluoresceinylethylenediamino ouabain gave a distance of 4.9 +/- 0.5 nm. Hence all data are consistent with the hypothesis that Na+/K+-ATPase in cellular membranes is an (alpha beta)2 diprotomer and works as a functional dimer (Thoenges, D., and Schoner, W. (1997) J. Biol. Chem. 272, 16315-16321).  相似文献   

8.
Snakevenomscontaincomplexproteinswhichpossessvariousbiologicalactivities ,in cludingaclassthataffectscoagulationsystemwithcoagulantoranticoagulantactivities .Ananticoagulantfactor (ACF)waspreviouslyiso latedfromthevenomofAgkistrodonacutusfromsouthernAnhu…  相似文献   

9.
Two of the five tryptophan residues (W659 and W692) in chicken gizzard smooth muscle caldesmon (CaD) are located within the calmodulin (CaM) binding sites in the C-terminal region of the molecule. When these Trp residues are replaced with Gly in either recombinant fragments or synthetic peptides of CaD, the affinity for CaM is decreased by at least 10-fold, suggesting that both of these residues are important for the interaction of CaD with CaM. To gain information about the topography of the CaM-CaD complex, we have carried out fluorescence titrations of CaM with Tb3+ as a substitute for Ca2+ in the presence of wild-type or mutated CaD variants. By exciting Trp residues of CaD fragments or peptides while monitoring the enhanced luminescence of CaM-bound Tb3+ ions via resonance energy transfer, we were able to estimate the relative proximity between the bound metal ions in the two domains of CaM and the Trp residues of CaD. Our results suggest that in the CaM-CaD complex the metal-binding sites III and IV in the C-terminal domain of CaM are very close to W659 of CaD; the N-terminal domain of CaM appears associated with the region of CaD in the vicinity of W692, although sites I and II are relatively far away from this Trp residue. These findings are consistent with a model in which CaM binds to CaD in an antiparallel manner. Such a binding mode, however, may be flexible enough to accommodate alternative spatial arrangements when the preferred binding sites are either altered or rendered unavailable.  相似文献   

10.
Vanadyl, (V = O)2+, is able to substitute for Mg2+ as a cofactor for ATPase activity catalyzed by the chloroplast F1-ATPase (CF1). Mg2+-dependent ATPase activity was also observed with CF1 that contained VO(2+)-ATP bound specifically to the noncatalytic N2 site. Modulation of the Mg(2+)-ATPase activity induced by VO2+ bound at this site indicates that the metal bound to the noncatalytic site affects catalytic activity. When CF1 is depleted of nucleotides from all but the N1 site, a single Mg2+ remains bound at a site designated M1. Addition of VO2+ to the depleted protein gives rise to an EPR spectrum characteristic of a CF1-bound VO2+ species. The binding curve of the VO2+ complex to latent, nucleotide-depleted CF1 was determined by the integrated intensities of the -5/2 parallel peak in the EPR spectrum as calibrated using atomic absorption spectroscopy. Under these conditions, VO2+ binds cooperatively to approximately two sites designated M2 and M3. Three-pulse ESEEM spectra of the CF1-VO2+ complex contain two intense modulations with frequencies and field-dependent behavior that show that they are from a directly coordinated 14N nucleus. Analysis of the bound VO2+ by ENDOR spectroscopy revealed the presence of a single group of protons associated with an equatorial amino or water ligand that is exchangeable with solvent. Using the additivity relation for hyperfine coupling, the most probable set of equatorial ligands to the VO2+ bound to CF1 under these conditions consists of one lysine nitrogen, two carboxyl oxygens from aspartate or glutamate, and one water.  相似文献   

11.
The conditions of nucleotide binding to native, though partly purified, Ca(2+)-ATPase from SR as well as the stoichiometry of nucleotide and strontium binding and the phosphorylation capacity was reevaluated. Binding of MgADP appeared to be aberrant whereas even high-affinity binding of [14C]-ADP took place in the absence of Mg2+. Also low-affinity ATP binding was possible in the absence of divalent cations. A heterogeneity in ADP binding compatible with a two-component model in the absence of thapsigargin was changed to an apparent homogeneity of low-affinity receptors following a mole:mole interaction of enzyme and thapsigargin. Since the affinity of both components was reduced by thapsigargin, high- as well as low-affinity ADP binding seem to be specific and probably to the substrate receptor proper. Analysis of ADP binding isotherms in the absence of Mg2+ according to a model of two independent populations of sites was compatible with a binding capacity of 8.49 +/- 0.43 nmoles/mg protein corresponding to a molecular mass of 118 +/- 6 kD per ADP site. The same total binding capacity was found for ATP. The phosphorylation capacity corresponded to more than one and less than two approximately P per two 110-kD peptides (formally one approximately P per 154 kD protein). Specific binding of Ca2+ and the congener Sr2+ to SR Ca(2+)-ATPase was compatible with their interaction with a single population of sites. The binding capacity was equal to one divalent cation per nucleotide binding peptide. The binding of one nucleotide and one divalent cation per approximately 110 kD peptide and the absence of cooperativity in divalent cation binding might imply that Ca(2+)-ATPase works as a monomer.  相似文献   

12.
Membrane-bound mammalian adenylyl cyclase isoforms contain two internally homologous cytoplasmic domains (C1 and C2). When expressed separately, C1 and C2 are catalytically inactive, but conversion of ATP to cAMP is observed if C1 and C2 are combined. By analogy with DNA polymerases, adenylyl cyclases are thought to require two divalent metal ions for nucleotide binding and phosphodiester formation; however, only one Mg2+ ion (liganded to C1) has been visualized in the recently solved crystal structure of a C1-C2 complex [Tesmer, J. J. G., Sunahara, R. K., Gilman, A. G., and Sprang, S. R. (1997) Science 278, 1907-1916]. Here, we have studied the binding of ATP to IIC2 (from type II adenylyl cyclase) using ATP analogues [2',3'-dialdehyde ATP (oATP), a quasi-irreversible inhibitor that is covalently incorporated via reduction of a Schiff base, the photoaffinity ligand 8-azido-ATP (8N3-ATP), and trinitrophenyl-ATP (TNP-ATP), a fluorescent analogue] and fluorescein isothiocyanate (FITC). [alpha-32P]oATP and 8N-[alpha-32P]ATP are specifically incorporated into IIC2. Labeling of IIC2 by [alpha-32P]oATP and by FITC is greatly enhanced by Mn2+ and to a much lesser extent by Mg2+. Similarly, TNP-ATP binds to IIC2 as determined by fluorescence enhancement, and this binding is promoted by Mn2+. Thus, a second metal ion binding site (preferring Mn2+) is contained within the C2 domain, and this finding highlights the analogy in the reaction catalyzed by DNA polymerases and adenylyl cyclases.  相似文献   

13.
OBJECTIVE: Earlier studies have shown a depression in the sarcoplasmic reticular (SR) Ca2+ uptake and gene expression in Ca2+ pump ATPase protein in congestive heart failure subsequent to myocardial infarction. It is the objective of this study to understand further the mechanisms of depressed SR Ca2+ pump activity in the failing heart. METHODS: Heart failure in rats was induced by occluding the left coronary artery for 16 weeks and the viable left ventricle was processed for the isolation of SR membranes. Sham-operated animals were used as control. The characteristics of SR Ca2+ pump ATPase in the presence of different concentrations of K+, Ca2+ and ATP were examined and the purity of these membranes was monitored by determining the marker enzyme activities. In addition to measuring changes in cyclic adenosine monophosphate (cAMP) protein kinase and Ca(2+)-calmodulin induced phosphorylation, alterations in SR phospholipid composition as well as sulfhydryl (SH) group content were investigated. RESULTS: Ca(2+)-stimulated ATPase activity, unlike Mg(2+)-ATPase activity, was depressed in the left ventricular SR from failing hearts as compared to control. The decrease in Ca(2+)-stimulated ATPase activity was seen at different concentrations of Ca2+, K+ and ATP but no changes in the affinities of the enzyme for Ca2+ and ATP were evident. The SR Ca(2+)-stimulated ATPase activities in the presence of both cAMP-dependent protein kinase and Ca(2+)-calmodulin were markedly decreased in the failing hearts when compared to control preparations. Furthermore, the 32P incorporation in the presence of cAMP-dependent protein kinase or Ca(2+)-calmodulin was also reduced in the experimental heart SR membranes. The phospholipid composition of the SR membranes from the failing heart was markedly altered. No changes in SH-group or the degree of cross contamination with other membranes were apparent in the failing heart SR. CONCLUSIONS: These results suggest that abnormalities in membrane phospholipid composition and phosphorylation of the enzyme may partly explain the observed depression in SR Ca2+ pump ATPase activity in heart failure following myocardial infarction.  相似文献   

14.
The present study investigated the presence of ryanodine receptors in the trematode Schistosoma mansoni. [3H]Ryanodine specific binding sites were found in the four subcellular fractions of S. mansoni; however, more binding sites were recovered in the heterogeneous fraction P1 and the microsomal fraction P4, as was thapsigargin-sensitive (Ca2+-Mg2+)ATPase activity, marking the sarco/endoplasmic reticulum calcium ATPase (SERCA) pumps. This binding had an equilibrium dissociation constant (Kd) in the nanomolar range, an apparent maximal number of receptors (Bmax) of about 80 fmol/mg of protein, and was modulated by ions (Ca2+, Mg2+) and some pharmacological tools such as caffeine. Ryanodine was able to accelerate the rate of 45Ca2+ release from actively loaded vesicles, and also to induce a transient contraction of the whole worm. We conclude that ryanodine-sensitive Ca2+ release channels are present in S. mansoni, with properties very similar to the ones present in higher animals.  相似文献   

15.
Several studies have shown that substitution of cardiac troponin C into fast skeletal muscle causes a marked reduction in cooperativity of Ca(2+)-activation of both myofibrillar ATPase and tension development. To clarify the underlying mechanisms, in the present study, Ca2+ binding to cardiac troponin C inserted into fast skeletal myofibrils was measured. Two classes of binding sites with different affinities (classes 1 and 2) were clearly identified, which were equivalent stoichiometrically to the two high-affinity sites (sites III and IV) and a single low-affinity site (site II) of troponin C, respectively. Ca2+ binding to class-2 sites and Ca(2+)-activation of myofibrillar ATPase occurred in roughly the same Ca2+ concentration range, indicating that site II is responsible for Ca2+ -regulation. Myosin crossbridge interactions with actin, both in the presence and absence of ATP, enhanced the Ca2+ binding affinity of only class-2 sites. These effects of myosin crossbridges, however, were much smaller than the effects on the Ca2+ binding to the low-affinity sites of fast skeletal troponin C, which are responsible for regulating fast skeletal myofibrillar ATPase. These findings provide strong evidence that the reduction in the cooperative response to Ca2+ upon substituting cardiac troponin C into fast skeletal myofibrils is due to a decrease in the positive feedback interaction between myosin crossbridge attachment and Ca2+ binding to the regulatory site of troponin C.  相似文献   

16.
4-Bromomethyl-6,7-dimethoxy-coumarin labels the (Ca(2+)-Mg(2+)-ATPase of skeletal muscle sarcoplasmic reticulum at Cys-344. Resonance energy transfer has been used to measure the distance between this site and Lys-515 labelled with fluorescein isothiocyanate as about 37 A. The height of Cys-344 above the phospholipid/water interface has been measured by resonance energy transfer for the ATPase reconstituted into bilayers containing fluorescein-labelled phosphatidylethanolamine; the height was found to be about 45 A. None of these distances was found to alter on changing pH, or on addition of Mg2+, Ca2+ or vanadate. Quenching of the fluorescence of the coumarin-labelled ATPase with KI suggested that the fluorophore is not fully exposed on the ATPase.  相似文献   

17.
The sarcoplasmic reticulum (SR) calcium ATPase carries out active Ca2+ pumping at the expense of ATP hydrolysis. We have previously described the inhibition of SR ATPase by oxidative stress induced by the Fenton reaction (Fe2+ + H2O2 --> HO. + HO- + Fe3+). Inhibition was not related to peroxidation of the SR membrane nor to oxidation of ATPase thiols, and involved fragmentation of the ATPase polypeptide chain. The present study aims at further characterizing the mechanism of inhibition of the Ca2+-ATPase by oxygen reactive species at Fe2+ concentrations possibly found in pathological conditions of iron overload. ATP hydrolysis by SR vesicles was inhibited in a dose-dependent manner by micromolar concentrations of Fe2+, H2O2, and ascorbate. Measuring the rate constants of inactivation (k inact) at different Fe2+ concentrations in the presence of saturating concentrations of H2O2 and ascorbate (100 microM each) revealed a saturation profile with half-maximal inactivation rate at ca. 2 microM Fe2+. Inhibition was not affected by addition of 200 microM Ca2+ to the medium, indicating that it was not related to iron binding to the high affinity Ca2+ binding sites in the ATPase. Furthermore, inhibition was not prevented by the water-soluble hydroxyl radical scavengers mannitol or dimethylsulfoxide, nor by butylated hydroxytoluene (a lipid peroxidation blocker) or dithiothreitol (DTT). However, when Cu2+ was used instead of Fe2+ in the Fenton reaction, ATPase inhibition could be prevented by DTT. We propose that functional impairment of the Ca2+-pump may be related to oxidative protein fragmentation mediated by site-specific Fe2+ binding at submicromolar or low micromolar concentrations, which may occur in pathological conditions of iron overload.  相似文献   

18.
The infectious isoform of the prion protein (PrPSc) is derived from cellular PrP (PrPC) in a conversion reaction involving a dramatic reorganization of secondary and tertiary structure. While our understanding of the pathogenic role of PrPSc has grown, the normal physiologic function of PrPC still remains unclear. Using recombinant Syrian hamster prion protein [SHaPrP(29-231)], we investigated metal ions as possible ligands of PrP. Near-UV circular dichroism spectroscopy (CD) indicates that the conformation of SHaPrP(29-231) resembles PrPC purified from hamster brain. Here we demonstrate by CD and tryptophan (Trp) fluorescence spectroscopy that copper induces changes to the tertiary structure of SHaPrP(29-231). Binding of copper quenches the Trp fluorescence emission significantly, shifts the emission spectrum to shorter wavelengths, and also induces changes in the near-UV CD spectrum of SHaPrP(29-231). The binding sites are highly specific for Cu2+, as indicated by the lack of a change in Trp fluorescence emission with Ca2+, Co2+, Mg2+, Mn2+, Ni2+, and Zn2+. Binding of Cu2+ also promotes the conformational shift from a predominantly alpha-helical to a beta-sheet structure. Equilibrium dialysis experiments indicate a binding stoichiometry of approximately 2 copper molecules per PrP molecule at physiologically relevant concentrations, and pH titration of Cu2+ binding suggests a role for histidine as a chelating ligand. NMR spectroscopy has recently demonstrated that the octarepeats (PHGGGWGQ) in SHaPrP(29-231) lack secondary or tertiary structure in the absence of Cu2+. Our results suggest that each Cu2+ binds to a structure defined by two octarepeats (PHGGGWGQ) with one histidine and perhaps one glycine carbonyl chelating the ion. We propose that the binding of two copper ions to four octarepeats induces a more defined structure to this region.  相似文献   

19.
Several functions of the 70-kilodalton heat shock cognate protein (Hsc70), such as peptide binding/release and clathrin uncoating, have been shown to require potassium ions. We have examined the effect of monovalent ions on the ATPase activity of Hsc70. The steady-state ATPase activities of Hsc70 and its amino-terminal 44-kDa ATPase fragment are minimal in the absence of K+ and reach a maximum at approximately 0.1 M [K+]. Activation of the ATPase turnover correlates with the ionic radii of monovalent ions; those that are at least 0.3 A smaller (Na+ and Li+) or larger (Cs+) than K+ show negligible activation, whereas ions with radii differing only approximately 0.1 A from that of K+ (NH4+ and Rb+) activate to approximately half the turnover rate observed with K+. Single turnover experiments with Hsc70 demonstrate that ATP hydrolysis is 5-fold slower with Na+ than with K+. The equilibrium binding of ADP or ATP to Hsc70 is unperturbed when K+ is replaced with Na+. These results are consistent with a role for monovalent ions as specific cofactors in the enzymatic hydrolysis of ATP.  相似文献   

20.
A high sensitive method for detecting the change of microsomal membrane surface oligosaccharides was developed to study the regulatory role of lipid- or peptide-linked mannoside of endoplasmic reticulum in synaptic functions. The binding of concanavalin A to the microsomal membrane surface was measured quantitatively using a microgram-order of rat brain microsomal proteins. The fluorescence polarization of concanavalin A (Con A)-fluorescein isothiocyanate (FITC) conjugate bound to the membrane was analyzed to quantitate the change of binding constant and the number of binding sites. As a control, the non-specific binding of bovine serum albumin-FITC conjugate was measured by the same technique. We measured the change of fluorescence intensity of membrane-bound FITC conjugates by the flow cytometry and found that the intensity of FITC conjugate bound to the membrane increased more than that of free form of the probe. We observed that the alpha-mannosidase-treatment of rat brain microsomes resulted in the increase of binding constant of Con A to the microsomal surface without significant loss of binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号