首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Four experiments of coagulation and flocculation were conducted to investigate the characteristics of colloidal silica removal in a high-tech industrial wastewater treatment plant for reclamation and reuse of the effluent. Experimental results illustrated that poly-aluminium chloride (PACl) showed higher performances on colloidal silica removal than alum. Interestingly, the two coagulants demonstrated the same capacity on silica removal. The specific silica removal capacity was approximately 0.135 mg SiO2/mg Al2O3 when the dosage of coagulants was in the range 30-150 mg/L Al2O3. In addition, the silica was reduced significantly at the condition of pH above 8. Experimental data implied that precipitation of aluminium flocs was the major mechanism for colloid silica removal in PACl and alum coagulation, besides, charge adsorption was also important for improving removal efficiency. Moreover, the addition of polyacrylic acid (PAA) as a flocculant could slightly advance silica removal in the PACl coagulation. The combined PACl/PAA/flocs coagulation was effective for the removal of colloidal silica, soluble COD, and turbidity and also suitable as a pretreatment unit in wastewater reclamation and reuse processes.  相似文献   

2.
In this paper, experimental studies were performed on a simulated reactive dyebath effluent to compare coagulation-flocculation and Fenton's oxidation with electrocoagulation using stainless steel (SS 304) and aluminium electrodes in terms of colour and COD removals as well as AOX formation potential and improvement of biological treatability. Results have indicated that FeCl3 and alum coagulation had little effect on colour removal whereas comparable colour removal efficiencies with those of electrocoagulation with steel electrodes and Fenton's oxidation were attained by FeSO4 coagulation. Almost complete colour removals accompanied with 77% COD abatement were obtained by both electrocoagulation with steel electrodes and Fenton's oxidation under optimised reaction conditions. Although electrocoagulation with aluminium electrodes yielded very limited colour removal and produced a high amount of sludge upon extended reaction time, this application brought about a marked improvement in biodegradability.  相似文献   

3.
Microcystis aeruginosa was cultured in biologically treated municipal effluent to simulate blue-green algal bloom conditions in a treatment lagoon. The effect of algae in the early, mid and late phases of growth on membrane fouling, chemical coagulation (alum or aluminium chlorohydrate (ACH)) and hydraulic cleaning on the microfiltration of this effluent was investigated. The effect of M. aeruginosa in the early phase was negligible and gave a similar flux profile and permeate volume to that of effluent alone. The increase in M. aeruginosa concentration for the mid and late phases caused a significant reduction in permeate volume compared with the early phase. Full flux recovery was achieved with an alum dose of 1 mg Al3+ L(-1) (early phase) and 10 mg Al3+ L(-1) (mid phase), demonstrating that membrane fouling was hydraulically reversible. For the late phase, the highest flux recovery was 89%, which was achieved with an alum dose of 5 mg Al3+ L(-1). Higher alum dosages resulted in a reduction in flux recovery. The use of 1.5 pm pre-filtration after alum treatment showed little improvement in water quality but led to a drastic reduction in flux recovery, which was attributed to diminishing the protective layer on the membrane surface, thus enabling internal fouling. The performance of ACH was comparable to alum at low dissolved organic carbon (DOC) and cell concentration, but was not as effective as alum at high DOC and cell concentration due to the formation of more compact ACH flocs, which resulted in a higher cake layer specific resistance, leading to the deterioration of performance.  相似文献   

4.
In the present study, phosphorus removal was studied using as coagulant spent alum sludge from a water treatment plant of EYDAP (Athens Water Supply and Sewerage Company) and compared to alum (Al2(SO4)3.18H2O), iron chloride (FeCl3.7H2O), iron sulfate (Fe2(S04).10H2O) and calcium hydroxide (Ca(OH)2) at a constant pH (equal to 6).The comparison was based on their efficiency to remove phosphorus in synthetic wastewater consisting of 10 mg/L P as potassium dihydrogen phosphate and 50 mg/L N as ammonium chloride, The experiments were carried out using a jar-test apparatus and the measurements were performed according to the Standard Methods for the Examination of Water and Wastewater. Pure alum, iron chloride and iron sulfate were much more efficient in phosphorus removal than the spent alum sludge but in the case of calcium hydroxide, phosphorus removal was very low in pH = 6. Specifically, orthophosphate were totally removed by alum using 15 mg/L as Al, by alum sludge using 75 mg/L as Al and by FeCl3.7H2O or Fe2(SO4).10H2O using 30 mg/L of Fe while in the case of calcium hydroxide P removal was actually zero. pH measurements showed that the uptake of phosphates is associated to the release of OH ions in the solution and that the end of P uptake is accompanied by the stabilization of pH. Finally this spent alum sludge was tested on municipal wastewater and proved to be effective as apart from phosphorus it was shown to remove turbidity and COD.  相似文献   

5.
To reduce the residual organic matter and phosphorus contained in secondary effluent, a biofiltration system combined with electrocoagulation using bipolar iron electrodes was evaluated as a supplementary treatment to existing small-community sewage treatment. Based on the results of batch tests, bipolar electrocoagulation (BEC) was found to be more effective on phosphorus removal than monopolar electrocoagulation (MEC) but energy consumption was less in monopolar electrocoagulation. Optimum conditions of BEC to treat the secondary effluent were current density 15 A/m2, electrode spacing 1 cm and pH < 8. The removals of COD(Cr) and phosphorus by biofiltration system without BEC were 69.1% and 9.6%, respectively. However, biofiltration system combined with BEC showed 76.6-83.7% and 70.7-93.0% removal for COD(Cr) and phosphorus respectively. Extraordinary increase in phosphorus could be achieved by introducing electrocoagulation to biofiltration, and BEC/biofiltration system was evaluated to be applicable to existing small-community sewage treatment plants as a supplementary process.  相似文献   

6.
Overcapacities of anaerobic digesters at municipal WWTPs are frequently used for the treatment of organic wastes in order to increase the biogas production. However, "co-digestion" of organic wastes leads to additional nitrogen loading and to additional loads of non-biodegradable COD. The effects of (co-) digestion of organic wastes from agro-industries (slaughterhouses, dairies and leather industry) on the wastewater cycle have been evaluated in full-scale investigations at Leoben WWTP with a capacity of 90,000 pe where the methane production was increased from 700 to more than 1700 Nm3 CH4 per day. For this evaluation, mass balances for COD and nitrogen have been applied to estimate the fluxes of these substances. Application of this method is described in detail. As the additional loadings, it was found that related to methane production less nitrogen is released from the organic wastes than from the waste sludge. While the ammonia nitrogen load in the effluent from sludge digestion was about 100 g NH4-N per Nm3 of CH4 produced, in the effluent from the digestion of organic wastes only 70 g NH4-N/Nm3 CH4 were found. The decrease in the COD removal efficiency after digestion of the organic wastes started was not regarded as significant enough to be seen as a consequence of the treatment of external substrate.  相似文献   

7.
焦跃腾  顾正华  丁昊  周欣 《人民长江》2017,48(21):23-28
电絮凝作为一种具有广泛应用前景的低廉高效污水处理技术,已经被证明在工业废水、生活污水等污染严重的水体处理上具有显著效果,但是目前对于电絮凝净化微污染水的相关研究较少。通过对电絮凝分批处理河水的实验研究,分析电絮凝方法处理微污染水的可行性,讨论极板间距的改变对电絮凝处理效果的影响。结果表明,电絮凝处理技术可以用于微污染水净化中,在电流密度为17.75 A/m2、极板间距为1.5 cm的条件下,反应30 min时,色度去除率为73.76%,浊度去除率为76.00%,悬浮固体去除率为85.71%,化学需氧量去除率为42.86%,总磷去除率为61.36%。在电絮凝反应中,极板间距对于微污染水的色度、浊度、悬浮固体和总磷去除效果具有明显的影响。  相似文献   

8.
A study was undertaken to remove colour from a kraft mill's treated effluent in Kenya and determine the suitability of phosphate rock to replace wood ash during the electrochemical process. The electrochemical method alone, electrochemical combined with alum (ELCAL), wood ash leachate (ELCAS) and phosphate rock (ELPHOS) solutions at a rate of 165 to 1000 g/m3 were tested. Effluent characteristics were determined after complete removal of colour. Same reduction rates of TS (85%) and TSS (89%) were recorded by ELCAS and ELPHOS. However, ELPHOS removed more COD (86 to 91%) and more BOD (85 to 92%) than ELCAS. Furthermore, the pH of ELPHOS treated solution was 9.3, within the Kenya Local Government's allowable limit. Power reduction with ELCAS and ELPHOS varied between 53 to 73% and 49 to 69% respectively but the difference was not statistically significant. Overnight aeration further improved the quality of ELCAS and ELPHOS treated effluent, reducing BOD and COD values to 0 mg/l. ELPHOS cost ($0.29/m3) was nevertheless three times higher than that of ELCAS ($0.10/m3), mainly because of free wood ash. ELPHOS did not also increase effluent phosphorus. It was therefore recommended that various ways be explored in making ELPHOS more economical to replace ELCAS.  相似文献   

9.
If coagulation is not completely successful and produces aggregates which are too small, fouling may increase. In some cases, a deep-bed filter could perhaps provide a solution. The paper examines these effects using experimental results for different waters. Activated sludge effluents, stormy seawater containing microalgae and spent filter backwash water (SFBW) were coagulated by alum or ferric chloride. Sand filtration tests were carried out. Tests were performed in a membrane filtration stirred cell, filtration pilot plant equipped with SDI analyzer (seawater) and pilot UF plant (SFBW). For activated sludge effluent, alum residual ratio curves of turbidity and total particle count (TPC) followed one another. With ferric chloride, low coagulant dosage showed negative turbidity removal. Contact granular filtration reduced membrane fouling intensity. Increasing the dose resulted in higher improvement in membrane flux. For seawater, a filter run period under storm conditions reached 35 hours with satisfactory filtrate quality. An iron chloride dose of 0.3 mg/l during normal conditions and 0.5 mg/l for stormy condition should be injected, mixed well before the filters, while maintaining 10 m/hr filtration rate and pH 6.8 value. For SFBW, alum flocculation pretreatment of SFBW was effective in reducing turbidity, TPC, viruses and protozoa. SFBW settling prior to flocculation did not enhance turbidity and TPC removal. The largest remaining particle fraction after alum flocculation was 3-10 microm in size, both Cryptosporidium and Giardia are found in this size range. Coagulation enhanced the removal of small size particles, a positive impact on reducing membrane fouling potential.  相似文献   

10.
建设内陆核电是我国经济社会发展的必然需求,但由于内陆核电自然环境和社会环境的特殊性,必须更进一步考虑排放对环境和公众的安全影响,对放射性废液进行深化处理,在解控排放的基础上进一步降低排放水平。本文在内陆AP1000机组已实施的放射性废液处理系统改进的基础上,开展了放射性废液深化处理研究,通过大量实验考察了不同进水pH值、硼浓度、含盐量、水温等水质条件和不同工作压力、回收率等运行条件下反渗透装置对硼酸的去除性能和对模拟放射性核素的截留能力。结果表明,通过控制适当的工艺条件,可以去除废液中80%以上的硼酸,同时保持很好的核素去除效果,达到进一步降低排放水平的目的。研究成果可为内陆核电厂放射性废液处理系统深化处理工程应用提供有力的技术支撑,并为后续内陆核电放射性废液深化处理提供参考。  相似文献   

11.
In recent years, electrocoagulation has been successfully used for wastewater treatment and is efficient in heavy metal ions removal. In the present work, electrocoagulation has been used for the removal of Hg(II) from synthetic wastewaters containing up to 20 mg/L of mercury. The electrode materials used are stainless steel (SS) and aluminum (Al). The effects of operating parameters, viz., current density, time of electrocoagulation, distance between electrodes, initial pH of the solution, presence of electrolyte in the solution and temperature have been studied. It was observed that more than 99% Hg(II) removal can be achieved by keeping the distance between SS and Al electrodes from 2 to 6 cm and initial pH range from 3 to 7. The results show that the pseudo second-order kinetics fits the data well. Also, preliminary cost estimation was reported.  相似文献   

12.
A pilot study was conducted to test an membrane bioreactor (MBR) process for combined biological and chemical P removal to achieve a very low effluent total phosphorus (TP) concentration of 0.025 mg P/L. With the data from the pilot test, a simulation study was performed to demonstrate that: (1) the pilot system behaviour (effluent quality, MLSS, etc.) can be modelled accurately with an activated sludge model combined with a chemical precipitation model; and (2) with the calibrated model, simulation scenarios can be performed to further understand the pilot MBR process, and provide information for optimizing design and operation when applied at full-scale. Results from the pilot test indicated that the system could achieve very low effluent TP concentration through biological P removal with a limited chemical addition, and chemical addition to remove P to very low level did not affect other biological processes, i.e., organic and nitrogen removal. Simulation studies indicate that the process behaviour can be modelled accurately with an activated sludge model combined with a chemical precipitation model, and the calibrated model can be used to provide information to optimize system design and operation, e.g., chemical addition control under dynamic loading conditions is important for maintaining biological P removal.  相似文献   

13.
The Kaldnes biomedia K1, which is used in the patented Kaldnes Moving Bed biofilm process, has been tested along with other types of biofilm carriers for biological pretreatment of a complex chemical industry wastewater. The main objective of the test was to find a biofilm carrier that could replace the existing suspended carrier media and at the same time increase the capacity of the existing roughing filter-activated sludge plant by 20% or more. At volumetric organic loads of 7.1 kg COD/m3/d the Kaldnes Moving Bed process achieved much higher removal rates and much lower effluent concentrations than roughing filters using other carriers. The Kaldnes roughing stage achieved more than 85% removal of organic carbon and more than 90% removal of BOD5 at the tested organic load, which was equivalent to a specific biofilm surface area load of 24 g COD/m2/d. Even for the combined roughing filter-activated sludge process, the Kaldnes carriers outperformed the other carriers, with 98% removal of organic carbon and 99.6% removal of BOD5. The Kaldnes train final effluent concentrations were only 22 mg FOC/L and 7 mg BOD5/L. Based on the successful pilot testing, the full-scale plant was upgraded with Kaldnes Moving Bed roughing filters. During normal operation the upgraded plant has easily met the discharge limits of 100 mg COD/L and 50 mg SS/L. For the month of September 2002, with organic loads between 100 and 115% of the design load for the second half of the month, average effluent concentrations were as low as 9 mg FOC/L, 51 mg COD/L and 12 mg SS/L.  相似文献   

14.
The purpose of this work was to evaluate the effect that ozone (O(3)) has on the advanced primary treatment (APT) and disinfection of wastewaters for their reuse in agriculture. The enhancement and optimization of APT was done by applying low O(3) doses during coagulation. By applying an ozone dose of 2 mg/L during APT, the required coagulant dose may be reduced by up to 25% to achieve a similar turbidity removal (and up to 50% for total suspended solids removal), when compared to a conventional APT treatment. When the same coagulant dose was applied (60 mg/L), the volume of settleable solids was reduced from 31.0 to 25.5 mL/L, and the settling velocity increased from 0.111 to 0.139 m/min. Disinfection was also improved by the use of ozone, which leads to better plant germination rates than when using chlorination, because of reduced toxicity of the ozonated effluents. Additionally, helminth eggs content was reduced by applying ozone.  相似文献   

15.
This paper presents results from exploratory experiments to test the technical feasibility of electrolytic treatment and coagulation followed by flocculation and sedimentation as post-treatment for the effluent of an UASB reactor treating simulated wastewater from an unbleached Kraft pulp mill. The electrolytic treatment provided up to 67% removal of the remaining COD and 98% of color removal. To achieve these efficiencies the energy consumption ranged from 14 Wh x l(-1) to 20 Wh x l(-1). The coagulation-flocculation treatment followed by settling required 350-400 mg x l(-1) of aluminium sulfate. The addition of a high molecular weight cationic polymer enhanced both COD and color removal. Both post-treatment processes are technically feasible.  相似文献   

16.
No single end-use has yet been identified that is capable of consuming the projected production of ochre (mainly iron (III) oxides) from mine drainage treatment. However, the high sorption capacity of ochre for phosphorus (up to 26 mg kg(-1)) means that it could be used in constructed wetlands to enhance phosphorus removal. Laboratory batch experiments showed that coarse-grained ochre removes 90% of all phosphorus forms from sewage effluent after 15 minutes of shaking. From a larger-scale experiment, it is estimated that constructed wetlands with an ochre substrate should remove phosphorus from sewage effluent for up to 200-300 years. The suitability of ochre for phosphorus removal is being investigated at the field scale in a wastewater constructed wetland (175 m2 area) in Berwickshire, UK. The hydraulic and treatment performance of the wetland were monitored for 15 months prior to installation at the inlet in November 2003 of a tank containing approximately 1200 kg ochre. Results so far show that improved hydraulic design is required for ochre to increase the mean phosphorus removal efficiency of the system (27 +/- 28%), but potentially toxic metals (Al, Cd, Cr, Cu, Fe, Ni, Pb, Zn) have not been released from the ochre into the wetland outflow.  相似文献   

17.
Up to 30% of the released colour arising from bleached kraft pulp and paper production comes from the alkaline extraction stage. This waste stream can therefore be readily targeted to remove colour at source in mills where improved colour management is required. The efficacy of five advanced oxidative treatment and physico-chemical technologies in removing colour from a typical Eop stage effluent was compared. The most effective oxidative treatment was peroxymonosulphate (79% colour removal in 15 minutes). Ozone and TAML treatments removed 74% and 58% of colour respectively within 30 minutes. In comparison, hydrogen peroxide alone was only able to remove 35% of the colour over 4 hours. Coagulation with polyaluminium chloride achieved 89% colour removal within 5 minutes. However, this treatment produced an undesirable sludge, and may cause toxicity in the treated wastewater. Overall, colour removal ability of the five technologies ranked from highest to lowest was polyaluminium chloride > peroxymonosulfate > ozone > TAML > hydrogen peroxide. Other factors, such as operating costs, feedstock modification and capital infrastructure, also need to be taken into account when selecting the most suitable colour management option.  相似文献   

18.
Nightsoil and piggery wastes generally present high strength organics and nitrogen. This study evaluated the nitrogen removal characteristics with the existing and modified nightsoil and piggery waste treatment plants. The existing conventional plants showed 20 to 40% nitrogen removal, but the modification with SBR or MLE process could remove effectively both nitrogen and organics with the minimum COD/TN and alkalinity/TN ratios of 6 and 3.6, respectively. Nitrite nitrification and denitrification rates obtainable at higher nitrogen loads were faster than the rates of nitrate nitrification and denitrification resulting in less reactor volume requirement. However, the higher nitrogen loads increased the organic loads resulting in the reactor temperature inhibiting nitrification. Thus, a combined treatment with anaerobic digestion with the adjustment of influent bypass rates was proposed to reduce the reactor temperature and the external carbon requirement. The biological treatment could discharge about 1,100 mg/L soluble COD and 50 mg/L soluble nitrogen, respectively.  相似文献   

19.
Due to the intrinsically small sizes of enteric viruses (20-100 nm) and their relatively high resistance to most disinfectants, detection of viruses in treated drinking water is not a rare phenomenon. This study therefore evaluates various aspects involved in a hybrid alum coagulation-ultrafiltration (UF) system for virus removal. Coagulant doses (0, 1 and 10 mg Al(3+)/L) and pH conditions relevant to drinking water (pH 6-8) were investigated. With this hybrid system, removal was not attributable merely to MS2 adsorption to flocs and subsequent retention by UF membranes. MS2 removal comprises of inactivation by the effect of pH and coagulant and subsequently, rejection of virus-associated flocs by UF membrane. Coagulation with 1 mg Al(3+)/L at pH 6 and 7 resulted in an overall reduction brought about by an average of 0.62 log inactivation via the pH effect, 1.2 log inactivation by alum coagulant, and >5.4 log rejection by the 100 kDa polyethersulfone UF membrane. In contrast, negligible upstream inactivation was noted with a coagulant dose of 1 mg Al(3+)/L at pH 8, but 5.8 log rejection was attained with downstream UF filtration. By optimizing the conditions appropriate for upstream inactivation and subsequent membrane rejection, virus removal efficiencies can be enhanced.  相似文献   

20.
The large amount of unutilised pineapple wastes produced every year in tropical countries, particularly in Thailand, adds to the existing environmental pollution problems of the country. This study investigated the utilisation of pineapple wastes to treat another form of waste (sludge) from wastewater treatment facilities in Thailand. Laboratory scale studies were carried out to determine the potential of using naturally fermented raw liquid from pineapple wastes as a source of citric acid in the extraction of Cr, Cu, Pb, Ni and Zn from anaerobically digested sewage sludge. Results of the leaching study revealed its effectiveness in extracting Zn (at 92%) at pH 3.67 and a short leaching time of only 2 h, and Ni at almost 60% removal at the same leaching time. Chromium removal was also high at almost 75% at a longer leaching time of 11 days. Variation in metal removal efficiencies may also be attributed to the forms of metals in sludge, with metals predominantly in the exchangeable and oxidisable phases showing ease of leachability (such as Zn). Compared to citric acid, at pH approaching 4.0, naturally fermented raw liquid seemed to be more effective in the removal of Zn and Cu at the same leaching time of 2 h, and Cr at a longer leaching time of 11 days. The pineapple pulp, which is a by-product of the process, can still be used as animal feed because of its high protein content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号