首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-k titanium silicate (i.e., TiSiO4) thin films of various thicknesses (in the 4.5- to 160-nm range) were successfully deposited by means of a sputter deposition process at room-temperature and integrated into metal-insulator-metal (MIM) capacitors. It is shown that the TiSiO4-based capacitors can exhibit a capacitance density as high as 30 fF/mum2 while maintaining low dielectric dispersion and losses. An excellent voltage linearity was also obtained ( alpha~600 ppm/V2 at 8.2 fF/mum2) together with a high dielectric constant of 16.5 and low leakage current of about 10 nA/cm2 at 1 MV/cm. Our results thus show that TiSiO4 films constitute a very promising approach for the achievement of high performance MIM capacitors  相似文献   

2.
In this letter, we investigate the dependence of the performance of metal-insulator-metal (MIM) capacitors with Sm2O3 dielectric on plasma treatment (PT) performed before Sm2O3 deposition, after Sm2O3 deposition, or both before and after Sm2O3 deposition. By performing PT in N2 ambient (PTN) after Sm2O3 dielectric formation, the effective quadratic voltage coefficient of capacitance (VCC) can be reduced from 498 to 234 ppm/V2 and the effective linear VCC can be reduced from 742.3 to 172 ppm/V for MIM capacitor with Sm2O3 dielectric having a capacitance density of ~ 7.5 fF/mum2. The leakage current density at +3.3 V can be reduced from 3.44 10-7 to 1.60 times 10-8 A/cm2 by performing PTN in both before and after Sm2O3 deposition. PTN after dielectric formation is an effective way to improve the performance of high-kappa dielectric MIM capacitors for RF and analog/mixed signal IC applications.  相似文献   

3.
A process for depositing in-situ very-thin (<10 nm) SiO2 films on top of a silicon-rich oxide (SRO) layer in a standard low-pressure chemical vapor deposition (LPCVD) reactor has been optimized. Polysilicon-gate MOS capacitors using this stacked dielectric have shown high tunneling current at low voltages and an extraordinary endurance to electrical stress. Capacitors with 7 nm LPCVD SiO2 on top of 10 nm SRO did not show any relevant shift on either the low or high portion of the I-V characteristic, after a fluence of more than 500 C/cm2 at J=0.1 A/cm2 . The results add further support to the usefulness of implementing these stacked dielectric structures in a variety of nonvolatile memory devices  相似文献   

4.
We describe the deposition of amorphous Zr-Sn-Ti-O (aZTT) dielectric thin films using conventional on-axis reactive sputtering. Thin films of composition Zr0.2Sn0.2Ti0.6 O2 have excellent dielectric properties: 40-50-nm thick films with a dielectric constant of 50-70 were obtained, depending on the processing conditions, yielding a specific capacitance of 9-17 fF/μm2. Breakdown fields were measured to be 3-5 MV/cm, yielding a figure of merit εε0Ebr=15-30 μC/cm2, up to eightfold higher than conventional deposited SiO2. Leakage currents, measured at 1.0 MV/cm, were in the range 10-9-10-7 A/cm2. This material appears well-suited for use in Si-IC device technology, for example as storage capacitors in DRAM  相似文献   

5.
The aim of this work was to develop a deposition process for a high-dielectric constant tantalum pentoxide for integrated capacitors. Thin films were deposited reactively on glass wafers using a radio-frequency magnetron sputtering cluster tool at various O2/Ar flow ratios. By using 2 MeV 4He+ backscattering spectroscopy and X-ray diffraction, the films obtained showed a stoichiometric orthorhombic β-Ta2O5 phase at 20% O2 in the sputtering gas flow. With low-frequency measurements (f=100 kHz), a 200×200-μm2 square metal–insulator–metal (MIM) capacitor with copper electrodes and a 340-nm thick dielectric gave a capacitance density of 0.066 μF/cm2, with a quality factor (Q) of 650. The value of the relative permittivity (r) was approximately 25 determined from MIM capacitors of various sizes. The surface roughness of the 376-nm thick oxide film was found to be small: 0.255 nm. The largest measured capacitor (200×200 μm2) gave reasonable results at low frequencies. When the frequency was increased (100 kHz–20 GHz) only for the smaller capacitors (30×30 μm2) the capacitance remained constant. However, the Q values decreased of the smaller capacitors as a function of frequency. Processed tantalum pentoxide MIM capacitors possessed reasonable electrical properties below 2 GHz and good potential for further improvement.  相似文献   

6.
Electrical characteristics of Al/yttrium oxide (~260 Å)/silicon dioxide (~40 Å)/Si and Al/yttrium oxide (~260 Å)/Si structures are described. The Al/Y2O3/SiO2/Si (MYOS) and Al/Y2 O3/Si (MYS) capacitors show very well-behaved I-V characteristics with leakage current density <10-10 A/cm2 at 5 V. High-frequency C- V and quasistatic C-V characteristics show very little hysteresis for bias ramp rate ranging from 10 to 100 mV/s. The average interface charge density (Qf+Q it) is ~6×1011/cm2 and interface state density Dit is ~1011 cm-2-eV-1 near the middle of the bandgap of silicon. The accumulation capacitance of this dielectric does not show an appreciable frequency dependence for frequencies varying from 10 kHz to 10 MHz. These electrical characteristics and dielectric constant of ~17-20 for yttrium oxide on SiO2/Si make it a variable dielectric for DRAM storage capacitors and for decoupling capacitors for on-chip and off-chip applications  相似文献   

7.
Polycrystalline paraelectric perovskite thin films in the Pb-La-Ti-O or PLT (28 mol.% La) system have been studied. Thin (0.5-μm) films were integrated onto 3-in Pt/Ti/SiO2/(100) Si wafers by the sol-gel processing technique. Low-field dielectric measurements yielded dielectric permittivity and loss tangent of 1400 and 0.015, respectively, while high-field Sawyer-Tower measurements (P-E) showed linear behavior up to 40 kV/cm, which approached saturation at 200 kV/cm. Pulse charging transient and current-voltage measurements indicated a high charge storage density (15.8 μC/cm2) and low leakage current density (0.50 μA/cm2) under a field of 200 kV/cm. The charging time for a 1-μm2 PLT capacitor at 200 kV/cm was estimated to be 0.1 ns. The preliminary data demonstrate that paraelectric PLT thin films have excellent potential for use in ULSI DRAMs and as decoupling capacitors  相似文献   

8.
Thin ZrO2layers were used to realize MOS capacitors with aluminum, polysilicon, and molybdenum gate electrodes. The layers, 300-600 Å in thickness, were obtained by metal organic chemical vapor deposition. The effects of various high-temperature treatments as well as gate material deposition conditions on the MOS capacitor properties were studied. Processing conditions compatible with standard silicon technology were established to obtain capacitors suitable for advanced DRAM application. Relative dielectric constant ∈ ≥ 16, breakdown fieldE_{B} ge 3MV/cm, and leakage currents at applied voltage of 5V around 10-8A/cm2enable the realization of capacitors with dielectric layer equivalent to 35 Å of SiO2.  相似文献   

9.
We have fabricated high-kappa TaN/Ir/TiLaO/TaN metal-insulator-metal capacitors. A low leakage current of 6.6 times 10-7 A/cm2 was obtained at 125degC for 24-fF/mum2 density capacitors. The excellent device performance is due to the combined effects of the high-kappa TiLaO dielectric, a high work-function Ir electrode, and large conduction band offset.  相似文献   

10.
Amorphous BaTiO3 thin-film capacitors suitable for integration into a multichip module packaging process were fabricated. The multilayer capacitor structure consisted of an adhesion layer (TiO xNy or Ti), a bottom electrode (Cu), a dielectric (amorphous BaTiO3), and a top electrode (Cu). A 3000-Å amorphous BaTiO3 film was deposited onto the electrode by the reactive partially ionized beam (RPIB) technique at near room temperature. After a 300°C postdeposition anneal, the capacitors had the following properties: εr=17-18 and tanδ<0.01 up to 600 MHz, Jleak=0.06-0.5 μA/cm2 at 0.5 MV/cm, and breakdown field Emax=3.3 MV/cm  相似文献   

11.
GaN MOS capacitors were fabricated using silicon dioxide deposited by low-pressure chemical vapor deposition oxide at 900°C. The MOS capacitor flatband voltage shift versus temperature was used to determine a pyroelectric charge coefficient of 3.7 × 109 q/cm2-K, corresponding to a pyroelectric voltage coefficient of 7.0 × 104 V/m-K  相似文献   

12.
Electrical and reliability properties of ultrathin La2O 3 gate dielectric have been investigated. The measured capacitance of 33 Å La2O3 gate dielectric is 7.2 μF/cm2 that gives an effective K value of 27 and an equivalent oxide thickness of 4.8 Å. Good dielectric integrity is evidenced from the low leakage current density of 0.06 A/cm2 at -1 V, high effective breakdown field of 13.5 MV/cm, low interface-trap density of 3×1010 eV-1/cm2, and excellent reliability with more than 10 years lifetime even at 2 V bias. In addition to high K, these dielectric properties are very close to conventional thermal SiO2   相似文献   

13.
High quality nanolaminate stacks consisting of five Al2O3-HfTiO layers with an effective dielectric constant of about 22.5 are reported. A dielectric constant for binary HfTiO thick films of about 83 was also demonstrated. The electrical characteristics of as-deposited structures and ones which were annealed in an O2 atmosphere at up to 950 degC for 5-10 min were investigated. Two types of gate electrodes: Pt and Ti were compared. The dielectric stack which was annealed up to 500 degC exhibits a leakage current density as small as ~1times10-4 A/cm2 at an electric of field 1.5 MV/cm for a quantum-mechanical corrected equivalent oxide thickness of ~0.76 nm. These values change to ~1times10-8 A/cm2 and 1.82 nm, respectively, after annealing at 950 degC  相似文献   

14.
Metal-insulator-metal (MIM) capacitors with a 56 nm thick HfO2 high-κ dielectric film have been fabricated and demonstrated for the first of time with a low thermal budget (~200°C). Voltage linearity, temperature coefficients of capacitance, and electrical properties are all characterized. The results show that the HfO2 MIM capacitor can provide a higher capacitance density than Si3N4 MIM capacitor while still maintaining comparable voltage and temperature coefficients of capacitance. In addition, a low leakage current of 2×10-9 A/cm2 at 3 V is achieved. All of these make the HfO 2 MIM capacitor to be very suitable for use in silicon RF and mixed signal IC applications  相似文献   

15.
Pentacene-based organic thin-film transistors with solution-process hafnium oxide (HfOx) as gate insulating layer have been demonstrated. The solution-process HfOx could not only exhibit a high-permittivity (kappa = 11) dielectric constant but also has good dielectric strength. Moreover, the root-mean-square surface roughness and surface energy (gammas) on the surface of the HfOx layer were 1.304 nm and 34.24 mJ/cm2, respectively. The smooth, as well as hydrophobic, surface of HfOx could facilitate the direct deposition of the pentacene film without an additional polymer treatment layer, leading to a high field-effect mobility of 3.8 cm2/(V middots) .  相似文献   

16.
The properties of metal-nitride-Si (MNS) capacitors in which the silicon nitride layer is produced by the jet vapor deposition (JVD) technique at room temperature are reported. Despite the room-temperature deposition, the electrical properties of these devices are far better than any previously reported MNS capacitors. Especially remarkable is the low density of interface traps (Dit<5×1010 /cm2-eV near midgap). In addition, these MNS capacitors are highly resistant to damage caused by hot electrons and ionizing radiation  相似文献   

17.
The turn-off operation of a 4H–SiC gate turn-off thyristor (GTO) with 2.6 kV breakover voltage has been investigated using an external Si-MOSFET as a gate-to-emitter shunt (MOS-gate mode), in the temperature interval 293–496 K. The maximum cathode current density jcmax that can be turned off in such a mode decreases from 1850 A/cm2 at 400 K to 700 A/cm2 at 496 K. The room temperature jcmax value is estimated to be about 3700 A/cm2. The above jcmax values are essentially higher than those observed when turning this thyristor off in the conventional GTO mode. Turn-off transients in the MOS-gate mode have been studied in both quasi-static and pulse regimes. Temperature dependencies of the turn-on and turn-off times, as well as those of the turn-on and turn-off energy losses have been measured. The upper switching frequency of the GTO is estimated to be about 700 kHz.  相似文献   

18.
We report Ir/TiO2/TaN metal-insulator-metal capacitors processed at only 300degC, which show a capacitance density of 28 fF/mum2 and a leakage current of 3 times 10-8 (25degC) or 6 times 10-7 (125degC) A/cm2 at -1 V. This performance is due to the combined effects of 300degC nanocrystallized high-kappa TiO2, a high conduction band offset, and high work-function upper electrode. These devices show potential for integration in future very-large-scale-integration technologies.  相似文献   

19.
ZnO-ZnMgO multiple quantum-well (MQW) thin-film waveguides with ridge structures have been fabricated on quartz substrates. Low-temperature deposition of high-quality ZnO-ZnMgO MQW thin films was achieved by filtered cathodic vacuum arc technique. A ridge is defined on the thin film by plasma etching. Room-temperature lasing with a peak wavelength at 378 nm of 1.5-nm well width was observed under 355-nm optical excitation. Exciton-exciton scattering was attributed to the amplified spontaneous emission observed from the MQW waveguide. The net optical gain can be larger than 80 cm-1 at a pump intensity of 2 MW/cm2 .  相似文献   

20.
Yip  L.S. Shih  I. 《Electronics letters》1988,24(20):1287-1289
Films of yttrium oxide (Y2O3) were deposited on Si substrates from a Y2O3 target by RF magnetron sputtering. MIS capacitors in the form of Al and Y2O3 (400 Å)-Si were then fabricated. The leakage current density was about 10-6 A/cm2 at 1.3×106 V/cm, and the breakdown field of the films was about 2.75×106 V/cm. The dielectric constant of the sputtered Y2O3 was found to be about 12-12.7  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号