首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The influence of temperature at various R ratio values on the fatigue crack propagation response of a ferritic spheroidal graphitic cast iron has been studied. It has been established that the influence of R ratio on ΔKth is strongly dependent upon the test temperature. At elevated temperatures the influence of R ratio is significantly less than that at ambient temperature. At low to intermediate R ratio values temperature initially decreased, then, with increasing temperature, increased the ΔKth levels, causing a minimum in ΔKth to occur at 250–300°C. At high R ratio, however, ΔKth exhibited a small but consistent increase with temperature. The influence of temperature on the ΔKth at various R ratio values could be adequately explained in terms of crack closure. Much intergranular failure was observed on the fatigue fracture surfaces at ambient temperature, whereas at elevated temperatures there was little evidence of this particular failure.  相似文献   

2.
This paper describes the effect of frequency and environment on the near-threshold fatigue crack growth behaviour of SA508 cl III reactor pressure vessel (RPV) steel. The study has shown that in the near-threshold regime microstructure and environment markedly affect fatigue crack growth behaviour. In an aqueous environment, fatigue crack growth behaviour became even more sensitive to microstructure, and the fatigue crack growth rate increased by a factor of four in the case of the 3 Hz test, while that for the 0·3 Hz test was increased by a factor of approximately sixteen. This environmental enhancement manifested itself in the form of intergranular failure. For the 0·3 Hz test the percentage intergranular failure decreased from 18% to <1% with an increase in ΔK level. The transition from microstructure-sensitive to microstructure-insensitive occurs when the cyclic plastic zone size is of the order of the prior austenite grain size.  相似文献   

3.
4.
The influence of stress ratio R and stress intensity range (ΔK) on fatigue crack growth experiments were determined for 6063-T6 aluminium alloy and crack growth data were analysed with different formulae for the effective stress intensity range ratio U. The data covered R values from 0 to 0·3. A good correlation was obtained from da/dN and ΔKeff using the equation for U as a function of R.  相似文献   

5.
The present investigation is aimed at examining the influence of environment and microstructure on the fatigue crack extension behaviour of a low alloy steel. Significant environmental effects were recorded under low R-Ratio testing but not under high R-Ratio conditions, viz., the ΔKth values recorded in salt solution were significantly larger than those for a dry air environment and a constant value of 10 MPa√m was recorded irrespective of microstructure (yield strength). Such effects were attributed to oxide induced closure effects.

Above threshold, environmental assisted cracking behaviour in the salt solutions was the result of the appearance of transgranular cleavage facets on the fatigue surfaces. The extent of this environmentally enhanced cracking was simply related to the extent of cleavage failure.  相似文献   


6.
Crack propagation experiments were performed on 6063-T6 Al-alloy for various load ranges and stress ratios. Experimental results show that for a constant load range, the life of specimens decreased as stress ratio increased. At constant maximum load, the life of the specimen increased as the load ratio increased. The crack growth data were analysed in terms of ΔKeff as a function of stress ratio R. The data covered R values from 0 to 0·5 and a good relationship was obtained for Keff/K = 0·55 + 0·12 R2. A crack growth rate equation was developed.  相似文献   

7.
An attempt has been made to develop a simple, reliable and cost-effective device for measuring the dynamic crack propagation velocity in a nuclear pressure vessel steel (SA516 gr. 70). The experimental method is described and a simple digital approach is proposed. The experimentally determined dynamic crack velocity has been utilized to obtain elastic dynamic stress intensity factors by INSAMCR (a two-dimensional dynamic finite element code which is a modified version of SAMCR developed by Dr Schwartz at the University of Maryland). A relationship between instantaneous crack tip velocities and dynamic stress intensity factors for pressure vessel steels is estimated using dynamic crack propagation velocities determined by a proposed measuring device. The relationship between the dynamic stress intensity factor and time history and the dynamic arrest toughness for each test are obtained using the generation mode dynamic finite element analysis. A function ƒ(å) = 1·356 − 2·672å + 6·494å2 − 4·539å3 + 1·461å4 is suggested which may be useful to predict the relationship between the dynamic fracture toughness (K(å)) and the dynamic crack arrest toughness (KIa) for SA516 gr. 70 steel (say K(å) = KIa ƒ(å) where å is the dynamic crack propagation velocity).  相似文献   

8.
From instrumented drop-weight tests, the nil ductility transition temperature (TNDT), and a conservative estimate of dynamic fracture toughness (KId), at TNDT for normalised and tempered 9Cr---1Mo steel, are determined to be −25°C and 70 MPa√m, respectively. The latter value agrees well with that determined from pre-cracked Charpy tests. The KIdYdYd is the dynamic yield stress) ratio at TNDT is estimated to be 0·076 √m, in agreement with previous estimates. The uncertainties in crack profile measurement and effect of microstructural variation in the heat affected zone on fracture loads are also discussed.  相似文献   

9.
The present review attempts to describe an assessment of the effects of the R-Ratio on ΔKth values in steels and compares the predictions of the various approaches or models dealing with R-Ratio response, with experimentally determined threshold stress intensity range values. Essentially significant R-Ratio effects on ΔKth have been observed and that the extent of such effects are highly dependent on microstructural considerations. The two classical approaches dealing with R-Ratio effects, viz., the Barsom and the Klesnil and Lukas models, can adequately describe the R-Ratio response when the data are considered in terms of microstructural characteristics. However, the other approaches of Mazumdar and Conrad and McEvily and Groeger fall short in predictive terms while the Musuva and Radon approach needs more detailed high R-Ratio ΔKth data before it can be realistically assessed.  相似文献   

10.
Water-splitting potential by cation-excessive (Ni, Mn) Ferrite, Ni0.5(1 + )Fe1.99(1 + )O4 was evaluated using the standard Gibbs free energy change (ΔG°) for the cation-excessive ferrite formation in different O2 partial pressures. The cation-excessive degree ranged from 0.026 to 0.16 in pO2 values of 7.9 × 10−7 to 1.0 × 10−1. From the relation between value of (Ni, Mn) ferrite and oxygen partial pressure, equilibrium constant K(th) was determined. Furthermore ΔH°s for O2 releasing and water-splitting reactions with cation-excessive (Ni, Mn) ferrite were evaluated from the van't Hoff plot and compared with that for magnetite-wüstite system; where ΔH°s were assumed to be the same values for both (Ni, Mn) ferrite and magnetite-wüstite system: +300 kJ for O2 releasing and −35 −63 kJ for water-splitting. ΔG°s evaluated for water-splitting with cation-excessive (Ni, Mn) ferrite and wüstite were −38 kJ and −35 kJ, respectively, at 298K. It suggests that water splitting with cation-excessive (Ni, Mn) ferrite proceed easily compared with that with wüstite. ΔS°s for water-splitting are −0.93 kJ K−1 for the former and −0.83 kJ K−1 for the latter. H2 generation rates by reaction with H2O for (Ni, Mn) ferrite were studied at temperatures of 573 K-1073 K. It reached the maximum at 1000 K while it proceeds preferentially below 830 K from thermodynamics.  相似文献   

11.
The Langmuir adsorption isotherm of the over-potentially deposited hydrogen (OPD H) for the cathodic H2 evolution reaction (HER) at the Pt–Rh (Pt:Rh; 80:20 wt%) alloy/0.5 MH2SO4 aqueous electrolyte interface has been studied using cyclic voltammetric and ac impedance techniques. The behavior of the phase shift (0°−φ90°) for the optimum intermediate frequency can be linearly related to that of the fractional surface coverage (1θ0) of the OPD H for the cathodic HER at the interface. The phase-shift profile (−φ vs. E) for the optimum intermediate frequency, i.e., the phase-shift method, can be used as a new electrochemical method to determine the Langmuir adsorption isotherm (θ vs. E) of the OPD H for the cathodic HER at the interface. At the Pt–Rh alloy electrode interface, the equilibrium constant (K) and the standard free energy (ΔGads) of the OPD H are 2.2×10−4 and 20.9 kJ/mol, respectively. At the steady state, the behaviors of the cyclic voltammogram and the Langmuir adsorption isotherm of the OPD H for the cathodic HER at the Pt–Rh alloy electrode interface are similar to those of the pure Pt electrode interfaces. At the steady state, the effect of Rh on the OPD H for the cathodic HER can be neglected at the Pt–Rh (Pt:Rh; 80:20 wt%) alloy/0.5 MH2SO4 aqueous electrolyte interface.  相似文献   

12.
Well-crystallized, layered LiCoO2 has been prepared by heating cobalt—organic acid complexes (such as malic acid and succinic acid) at 900 °C in air after preheating at 400 °C (2 h) and at 650 °C (6 h). LiCoO2 obtained by this method shows a high (003) peak intensity and low (104) or (101) intensities in X-ray diffraction (XRD). The first discharge capacity of LiCoO2 obtained from this method in ester-based electrolyte is 132 mA h g−1 on cycling between 4.3 and 3.7 V. The value is larger than that obtained by the conventional method. X-ray diffraction studies and open-circuit voltage curves show the presence of at least two types of reaction. A two-phase reaction occurs in the region of 0.71<χ <1.0 in LixCoO2. The lithiation proceeds as a homogeneous reaction together with expansion of the c-axis in the region of 0.47<χ<0.71. The expansion of the c-axis againstΔχ at x=0.56 corresponds well with the voltage jump observed in the charge/discharge curves.  相似文献   

13.
This paper summarises the results of experimental creep tests of type 304 stainless steel tube subjected to internal pressure at 650°C. The equipment used was especially developed for these tests.

The tubes without notches were tested at pressures of 9·32 and 7·36 MPa. Test results indicate that the rupture time of the tubes without notches is in good agreement with that of uniaxial specimens when the maximum stress is taken as the rupture criterion. The tubes containing axial and circumferential surface notches were tested at a pressure of 7·36 MPa. Test results indicate that the ductile fracture theory is applicable to the life prediction in the case of axial notches.

An electric potential method was very useful for monitoring the creep crack growth from the notch root. The relationship between the creep crack growth rate and the fracture mechanics parameter, σnet or K1, was investigated.  相似文献   


14.
Electrochromic niobia (Nb205) coatings were prepared by the sot-gel spin-coating and d.c. magnetron sputtering techniques. Parameters were investigated for the process fabrication of sol-gel spin coated Nb205 films exhibiting high coloration efficiency comparable with that d.c. magnetron sputtered niobia films. X-ray diffraction studies (XRD) showed that the sot-gel deposited and magnetron sputtered films heat treated at temperatures below 450°C, were amorphous, whereas those heat treated at higher temperatures were slightly crystalline. X-ray photoelectron spectroscopy (XPS) studies showed that the stoichiometry of the films was Nb205. The refractive index and electrochromic coloration were found to depend on the preparation technique. Both films showed low absorption and high transparency in the visible range. We found that the n, k values of the sot-gel deposited films to be lower than for the sputtered films. The n and k values were n = 1.82 and k = 3 × 10−3, and n = 2.28 and K = 4 × 10−3 at 530 urn for sot-gel deposited and sputtered films, respectively. The electrochemical behavior and structural changes were investigated in 1 M LiC104/propylene carbonate solution. Using the electrochemical measurements and X-ray photoelectron spectroscopy, the probable electrode reaction with the lithiation and delithiation is Nb2O5 + x Li+ + x e ↔ LixNb205. Cyclic voltametric (CV) measurements showed that both Nb205 films exhibits electrochemical reversibility beyond 1200 cycles without change in performance. “In situ” optical measurement revealed that those films exhibit an electrochromic effect in the spectral range 300 < λ < 2100 nm but remain unchanged in the infrared spectral range. The change in visible transmittance was 40% for 250 nm thick electrodes. Spectroelectrochemical measurements showed that spin coated films were essentially electrochemically equivalent to those prepared by d.c. magnetron sputter deposition.  相似文献   

15.
The dependence of crack growth rate on various crack tip parameters was studied. Experiments were performed on thin sheets of 6063-T6 Al-alloy having a central notch, to find crack tip opening displacement, total strain range, plastic strain range, crack opening stress and crack growth rate. Crack tip opening displacement and crack opening stress were measured, using a surface measurement technique, with small crack opening displacement gauges. The theoretical predictions of crack tip opening displacement compare fairly well with the experimental values. It is found that crack propagation rate vs total strain range-plastic strain range gives a straight-line fit on a log-log graph and, for positive stress ratios, the fatigue crack growth rates are found to be independent of R.

Experimental results show that the crack opening stress is not affected by the position of the gauge when it is mounted behind and near the crack tip.

The effect of mechanical properties and loading on crack growth were also studied. The specimens were fatigue cracked to a predetermined length and some specimens were annealed and again loaded cyclically. The application of cyclic loads to annealed specimens caused significant increase in crack propagation rates in comparison with the specimens having no heat-treatment. The load-displacement record was found to stabilize in about 10 cycles; the crack then extended slowly as a fatigue crack. Crack propagation rates for different values of R for annealed and work-hardened material were plotted against a crack tip parameter, ΔK*, based on notional crack lengths. Since the results of da/dN vs ΔK* for both states of material (as-received and annealed) seem to lie on the same straight line on a log-log graph, the study provides a hope that the results for a material tested in any state (annealed or work-hardened) for positive values of R (0·0≤R≤0·3) will lie on this line, thus eliminating fatigue tests on the same material under different work-hardening conditions for different values of R. Models for da/dN have been developed using various crack tip parameters.  相似文献   


16.
Rate constants for the reaction of isocyanate radicals (NCO) in its electronic ground state ( 2Π) with oxygen atoms were determined at 2.5 Torr total pressure in the temperature range 302–757 K. Excimer laser photolysis (ELP) of chlorine isocyanate (ClNCO) produced NCO radicals detected by laser-induced fluorescence (LIF). The reaction NCO + O exhibits a negative temperature dependence, described by the two-parameter equation: kNCO+O(T) = (4.3−2.2+3.2) × 10−8 × T−1.14−0.12+0.08 cm3 molecule−1 s−1. Measurements at 298 K and total pressures of 2.5 and 9.9 Torr, respectively, indicated a slight pressure dependence. For the reaction of NCO radicals with hydrogen atoms, the rate constant kNCO+H = (2.2 ± 1.5) × 10−11 cm3 molecule−1 s−1was obtained at 298 K and a total pressure of 2.6 Torr for the first time by a direct measurement. From a single measurement k = (3.8 ± 1.6) × 10−11 cm3 molecule−1 s−1 was determined at 548 K and 2.4 Torr total pressure. In addition, rate constants for the reactions of NCO radicals with molecular oxygen (O2), carbon dioxide (CO2), molecular hydrogen (H2), and carbon monoxide (CO), which is a dissociation product of CO2 in a microwave discharge, were measured at two different temperatures. At room temperature these reactions were slow and at the detection limit of the ELP/LIF technique. However, at elevated temperatures at least the rate constants of the reactions NCO + O2 and NCO + H2 become significantly larger and, therefore, should be taken into account, when modeling combustion processes under certain conditions.  相似文献   

17.
The preparation of LiCoyMnxNi1−xyO2 from LiOH·H2O, Ni(OH)2 and γ-MnOOH in air was studied in detail. Single-phase LiCoyMnxNi1−xyO2 (0y0.3 and x=0.2) is obtained by heating at 830–900°C. The optimum heating temperatures are 850°C for y=0–0.1 and 900°C for y=0.2–0.3. Excess lithium (1z1.11 for y=0.2) and the Co doping level (0.05y0.2) do not significantly affect the discharge capacity of LizCoyMn0.2Ni0.8−yO2. The doping of Co into LiMn0.2Ni0.8O2 accelerates the oxidation of the transition metal ion, and suppresses partial cation mixing. Since the valence of the manganese ion in LiMn0.2Ni0.8O2 is determined to be 4, the formation of a solid solution between LiCoyNi1−yO2 and Li2MnO3 is confirmed.  相似文献   

18.
The effect of a long post weld heat treatment on the microstructure and mechanical properties of a welded joint in a 0·2%C-1·4%Mn-0·5%Mo pressure vessel steel was studied. Multipass submerged-arc welds were made at a heat input of 1·2 and 4·3 kJ mm−1. Individual microstructural regions observed in the heat-affected zone of the actual weld were simulated. These regions were brittle in the as-simulated condition. Post weld heat treatment for periods of up to 40 h at 620°C resulted in a significant improvement in the Charpy impact toughness. At the same time, a loss of the heat-affected zone and weld metal hardness and transverse weld strenghth occurred. A fracture toughness (JIc) of 134 kJ m−2 was measured in the heat-affected zone of the 4·3 kJ mm−1 welds after prolonged post weld heat treatment. The improvement in weldment toughness with post weld heat treatment was primarily attributed to softening of the structure.  相似文献   

19.
Oxidative conversion of propane to propylene and ethylene over a V2O5/CeO2/SA5205 (V:Ce=1:1) catalyst, with or without steam and limited O2, has been studied at different temperatures (700–850 °C), C3H8/O2 ratio (4.0), H2O/C3H8 ratio (0.5) and space velocity (3000 cm3 g−1 h−1). The propane conversion, selectivity for propylene and net heat of reaction (ΔHr) are strongly influenced by the reaction temperature and presence of steam in the reactant feed. In the presence of steam and limited O2, the process involves a coupling of endothermic thermal cracking and exothermic oxidative conversion reactions of propane which occur simultaneously. Because of the coupling of exothermic and endothermic reactions, the process operates in an energy-efficient and safe manner. The net heat of reaction can be controlled by the reaction temperature and concentration of O2. The process exothermicity is found to be reduced drastically with increasing temperature. Due to the addition of steam in the feed, no coke formation was observed in the process.  相似文献   

20.
Composite membranes based on phosphotungstic acid (PWA) adsorbed on silica (SiO2) and polybenzimidazole (PBI) have been prepared and their physico-chemical properties have been studied. The membranes with high tensile strength and thickness of less than 30 μm can be cast. They are chemically stable in boiling water and thermally stable in air up to 400°C. Proton conductivity is influenced by the temperature (range: 30–100°C), relative humidity and PWA loading in the membrane. Maximum conductivity of 3.0×10−3 S/cm is obtained at 100% relative humidity and 100°C with membrane containing 60 wt.% PWA/SiO2 in PBI. Conductivity measurements performed at higher temperatures, in the range from 90°C to 150°C, give almost stable values of 1.4–1.5×10−3 S/cm at 100% relative humidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号