首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A yellow emitting long afterglow luminescence material SrSc2O4:Pr3+ was successfully prepared by solid state reaction method. SrSc2O4:Pr3+ phosphor shows a long afterglow luminescence peak at about 495, 545, 621, 630 and 657 nm, respectively, corresponding to the f–f transitions of Pr3+. The afterglow chromaticity coordinates of SrSc2O4:1 at%Pr3+ were calculated to be (0.35, 0.41), indicating that the afterglow emission is close to the light of yellow region. And, the afterglow luminescence of the optimal sample doped by 1 at%Pr3+ can persist for over 3 h. The thermoluminescence results suggest that there are three types of traps with depth of 0.61, 0.69 and 0.78 eV exiting for all the samples, which are produced by the addition of Pr3+ ions. The trap density of SrSc2O4:1 at%Pr3+ is the maximum when the incorporation of Pr3+ ions reaches 1 at%, which thus results in the longest afterglow luminescence. All the results indicate that SrSc2O4:Pr3+ can be a potential candidate of novel long afterglow phosphors.  相似文献   

2.
Rare earth Sm3+, Pr3+doped NaSr2(NbO3)5 red phosphors were successfully synthesized. X-ray diffraction analysis indi-cated that all the samples were single phased. The luminescence property was investigated in detail by diffuse-reflectance spectra and photoluminescence spectra measurement. Both NaSr2(NbO3)5:Sm3+and NaSr2(NbO3)5:Pr3+phosphors showed strong absorption in near ultraviolet region, which was suitable for application in LEDs. When excited by UV light, they both emitted bright red emission with CIE chromaticity coordinates (0.603, 0.397) and (0.669, 0.330), respectively. The optimal doping concentration of Sm3+doped NaSr2(NbO3)5 was measured to be 0.04 and that for Pr3+doped NaSr2(NbO3)5 was 0.01. The integral emission intensity was also measured and compared with the commercial red phosphor Y2O3:Eu3+. The results indicated that NaSr2(NbO3)5:RE3+(RE=Sm, Pr) have potential to serve as a red phosphor for UV pumped white LEDs.  相似文献   

3.
Wide color gamut(WCG) backlight for liquid crystal display(LCD) utilizing white light-emitting diodes(LED) has attracted considerable attention for their high efficiency and color reduction.In this review,recent developments in crystal structure,luminescence and applications of phosphors for wide color gamut LED backlight are introduced.As novel red phosphors,Mn~(4+)activate fluoride and aluminate phosphors are advanced in quantum efficiency,thermal quenching and color saturation for their characteristic spectrum with broad excitation band and linear emission.The crystal structure and fluorescence properties of Mn~(4+)doped fluosilicate,fluorogermanate,fluotitanate,as well as Sr_4 Al_(14)O_(25),CaAl_(12)O_(19) and BaMgAl_(10)O_(17) phosphors are discussed in detail.A serial of narrow-band red-emitting Eu~(2+),Eu~(3+)and Pr~(3+)-doped nitride silicates and molybdate phosphors are also introduced.Rare-earth-doped oxynitride and silicate green-emitting phosphors have attracted more and more attention because of the wide excitation,narrow emission,high quenching temperature,high quantum efficiency,such as β-sialon:Eu~(2+),Ba_3Si_6O_(12)N_2:Eu~(2+),MSi_2O_2N_2:Eu~(2+)(M=Ca,Sr,Ba),y-AlON:Mn~(2+)and Ca_3Sc_2Si_3O_(12):Ce~(3+).All above phosphors demonstrate their adaptability in wide color gamut LCD display.Especially for Mn~(4+)doped fluosilicate red phosphor and β-sialon:Eu~(2+)green phosphor.To achieve an ultra-high color gamut in white LED backlight and against the OLED,innovative narrow-band-emission red and green phosphor materials with independent intellectual property rights are continuously pursed.  相似文献   

4.
This paper reported a novel synthetic route to Eu2+ doped SrSiN2 deep red phosphors for white light-emitting diodes. A series of single-phased and high-efficiency Sr Si N2:Eu2+ red phosphors were synthesized based on this method. Their structure, morphology, luminescence, quantum efficiency(QE) and thermal quenching properties were investigated and compared with those of Sr Si N2: Eu2+ prepared by the conventional route. It was found that the addition of a small amount of Si3N4 could promote the formation of Sr Si N2 from Sr2Si5N8 phase. A highly uniform rod-shaped morphology was obtained based on this method. The X-ray powder diffraction and the Rietveld refinement analysis identified the preferential crystalline orientation growth. Under the blue light excitation, Eu2+ doped Sr Si N2 phosphors showed excellent optical properties. Compared with those prepared by the conventional approaches, the external QE of Sr Si N2:Eu2+ phosphor was greatly improved, allowing it a promising phosphor for white LEDs.  相似文献   

5.
In this work,through a facile method of low-temperature(only 350 ℃) self-reduction,1D nano-sized M2B5O9CI:Eu2+(M=Sr,Ca) blue phosphors with highly efficient performance can be obtained.The crystal structure,morphology and photoluminescence(PL) properties including thermal stability of M2B5O9CI:Eu2+(M=Sr,Ca) phosphors were investigated.The M2B5O9CI:Eu2+(M=Sr,Ca) phos...  相似文献   

6.
The hardystonite phosphors of Eu2+ activated M2ZnSi2O7 (M=Sr, Ba) were synthesized by combustion-assisted method. They were systematically characterized by photoluminescence excitation and emission spectra. The emission spectra of these two phosphors showed that the main emission peaks are at 475 and 503 nm due to 4f65d1→4f7 transition of Eu2+. Both phosphors could be efficiently excited in the wavelength range of 250-425 nm where the near ultraviolet light-emitting diode was well matched. The (x, y) color coordinates were determined with the emission values (x, y)=(0.41, 0.21) and (0.16, 0.45) for the M2ZnSi2O7: Eu2+ (M=Sr, Ba) phosphors.  相似文献   

7.
Green emitting Eu2+-doped (Ba3_xSrx)Si6012N2 solid solutions were synthesized through solid state reaction at 1350 ℃ for 10 h under a N2/H2 atmosphere. The XRD patterns revealed that the solid solution series of (Ba3 x-ySrx)Si6Ol2N2:yEu2+ with x value ranging from 0-0.6 were established. An efficient and intense tunable green light was observed by varying the cation Sr/Ba ratio. The emission spectra exhibited an entire shift towards long wavelength with increasing ofx value, which was caused by large crystal field splitting and Stokes shift. The x value dependence of emission intensity was discovered and explained by the enhanced probability of electron from excited 4f state to 5d ground state via nonradioactive transition. Highly thermal stability and feasible color coordinates were verified. White LEDs with excellent photochromic properties were fabricated by packing GaN based blue chips and (Ba Sr)3Si6012N2:Eu2+ phosphors. All results indicated that the (Ba3_xSrx)SirO12N2:Eu2+ phosphors were confirmed to be a promising candidate for pc-white LEDs in solid state lighting.  相似文献   

8.
This paper investigates the photoluminescence properties of NaCaTiNbO_6:Pr~(3+) and NaCaTiNbO_6:Pr~(3+),Bi~(3+) phosphors. NaCaTiNbO_6:Pr~(3+) and NaCaTiNbO_6:Pr~(3+),Bi~(3+) powder were synthesized successfully by solid state reaction method. Phase purity was checked using X-ray powder diffractometry(XRD). The excitation and emission spectra were recorded to elucidate the photoluminescence properties of NaCaTiNbO_6:Pr~(3+) and NaCaTiNbO_6:Pr~(3+),Bi~(3+). Furthermore,fluorescence lifetime measurements were performed. The excitation spectra of NaCaTiNbO_6:Pr~(3+) show a main band centered at around 357 nm.The luminescence spectra of NaCaTiNbO_6:Pr~(3+) exhibit a red emission peak at 615 nm from the ~1 D_2→~3 H_4 transition of Pr~(3+) ions. With the introduction of the Bi~(3+) ion into NaCaTiNbO_6:Pr~(3+), the luminescence intensity is enhanced nearly two times. Meanwhile,the absorption band edge of NaCaTiNbO_6:Pr~(3+) is shifted from 380 to 420 nm. Thus, this study shows that the red phosphor NaCaTiNbO_6:Pr~(3+) incorporated with Bi~(3+) is advantageous for light-emitting diode applications.  相似文献   

9.
Red phosphor,with longer wavelength,is highly desirable for full-spectrum WLEDs.Targeted deep red phosphors(Sr,Gd)Li(AI,Mg)3N4:Eu2+ were designed from the initial model of SrLiAl3N4:Eu2+ by structural modification.The correlations among structural evolution,crystal-field environment,and luminescence properties were elucidated.Replacing Sr2+ with Gd3+in(Sr,Gd)LiAl3N4:Eu2+ leads...  相似文献   

10.
CaTiO3:Eu3+ red phosphors were prepared using H3BO3 assisted solid state synthesis. The structure and morphology of the obtained sample were observed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). And the luminescence property was measured using photoluminescence excitation (PLE) and photoluminescence (PL) spectra, respectively. In the excitation spectra, main excitation peaks of the prepared samples were centered at 397 and 465 nm, revealing that these phosphors could be excited by commercial GaN- and InGaN-typed light emitting diodes (LEDs). Dominant emission peaks of the phosphors were located at 616 nm, owing to the transition of 5D07F2 of Eu3+. In the optimum condition, CaTiO3:3%Eu3+ phosphor was obtained at a sintering temperature of 1200 °C in air with a content of 20 mol.% H3BO3 addition. When excited by 397 nm irradiation, the PL intensity of as-prepared red phosphor was 2.2 times higher than that of samples obtained by traditional solid state synthesis, while the PL intensity was 3 times higher than that excited by 465 nm irradiation. The added H3BO3 improved the crystallinity, and increased the color purity, implying the potential to be a promising red phosphor in white light emitting diodes (WLEDs).  相似文献   

11.
Eu2+-doped bromophosphateapatite Sr5(PO4)3Br phosphors were synthesized by the conventional high-temperature solid-state reaction. The crystal structure and luminescence properties of the phosphors, as well as their thermal stability and CIE chromaticity coordinates were systematically investigated. Photoluminescence spectra of Sr5(PO4)3Br:Eu2+ exhibit a single blue emission at 450 nm under the excitation of 345 nm, which is ascribed to the 4f–5d transition of Eu2+. The phosphor shows very good thermal stability. The CIE color coordinates are very close to those of BaMgAl10O17:Eu2+ (BAM). All the properties indicate that the blue-emitting Sr5(PO4)3Br:Eu2+ phosphor has potential application in white LEDs.  相似文献   

12.
A series of Gd5Si2BO13:Eu3+ and non-rare earth Bi3+ ions doped Gd5Si2BO13:Eu3+ phosphors was successfully synthesized via high-temperature solid-state method,and the as-obtained phosphors were studied on their phase structures,luminescence characteristics,thermal stability and luminescence lifetime.Transient fluorescence spectroscopy data show that the addition of Bi3+ can obviously enha...  相似文献   

13.
For the purpose of development of highly energy-efficient light sources, one needs to design highly efficient green, red and yellow phosphors, which are able to absorb excitation energy and generate emissions. In this contribution, we present our results on producing some efficient phosphors with improved luminescence properties. Using double activation, energy could be transferred from one luminescent activator to the other one, resulting in more efficient or brighter device operation. Co-activators could be added to a host material to change the color of the emitted light. The incorporation of Eu3+ or Tb3+ ions into the CaWO4 crystal lattice modified the luminescence spectrum due to the formation of the emission centers that generated the specific red and green light. Very efficient new red phosphors based on YNbO4 and doped by Eu3+, Ga3+, Al3+ allowed recommending these materials as good candidates for different applications including LED and X-ray intensifying screens. For double activated TAG with Ce3+ and Eu3+ and for different mole ratios of Ce/Eu, the color temperature changed from 5500 K (0.331, 0.322) up to 4200 K (0.370, 0.381) and the light became “warmer”. Application of TAG: Ce, Eu in the light emitting device showed better chromaticity coordinates of luminescence and color rendering index of LEDs.  相似文献   

14.
The phosphors that are able to convert vacuum ultraviolet(VUV) light into visible light are demanded for the development of novel displaying and lighting devices.NaYF4:Pr3+,Dy3+,NaGdF4:Pr3+,NaGdF4:Dy3+and NaGdF4:Pr3+,Dy3+were prepared by hydrothermal synthesis method and their luminescent properties in VUV-vis spectral region were investigated at room temperature.For NaYF4:Pr3+,Dy3+,no energy transfer process from Pr3+to Dy3+was observed.However,the introduction of Gd3+into the fluoride lattice led to intense Dy3+emissions upon Pr3+4f5d state excitation.Gd3+acted as an intermediate,resulting in efficient energy transfer from Pr3+to Dy3+in NaGdF4.Pr3+transferred most of its energy to Gd3+,and then the energy was transferred from Gd3+to Dy3+.So NaGdF4:Pr3+,Dy3+not only took full advantage of the intense Pr3+4f5d absorption,but converted the VUV excitation light into the near-white emission of Dy3+.  相似文献   

15.
A new convenient calcium cyanamide (CaCN2) reduction route was developed to synthesize the Eu^2+ activated Ca-α-SiAION phosphors containing low oxygen content. The luminescence properties of the obtained products were investigated for white LEDs application. The critical Eu^2+ concentration in various hosts and its effect on the photoluminescence properties were studied. The optimized sample (10at.% Eu^2+ vs. Ca^2+) could be efficiently excited by the current GaN/InGaN blue LED chips and provided emission intensity competitive with that of YAG:Ce^3+ (P46-Y3) standard, revealing that this phosphor was a potential candidate for phosphor-converted white LEDs.  相似文献   

16.
Rare earth borogermanates as a group of stable compounds provided various potential properties important for modern sciences. Among the properties of interests, luminescence was manifested due to the variability of rare earth elements and the compounds constituted an important group of potential candidate. In this work, novel phosphors of Eu3+, Tb3+ or Tm3+ doped LaBGeO5 with the stillwellite type structure were synthesized by the solid state reaction method. Their X-ray and UV excitation luminescent properties showed that LaBGeO5 was an excellent host lattice for the luminescence of Eu3+, Tb3+ and Tm3+. The LaBGeO5:Eu3+, LaBGeO5:Tb3+ and LaBGeO5:Tm3+ presented bright red, green and blue emission light for both UV and X-ray excitation.  相似文献   

17.
Red emitting phosphors play a significant role in accelerating the improvement of illumination quality for white light emitting diodes (WLEDs). In this work, by using solid-state reaction method, an efficient novel Ba2LuNbO6:Eu3+ phosphor with double-perovskite structure was successfully prepared. Here, a series of Ba2LuNbO6:Eu3+ red phosphors can be efficiently pumped by the near-ultraviolet (UV) light and then present high-brightness at orange emission (598 nm, 5D07F1) and red emission (610 nm, 5D07F2). The ratio values of 610 to 598 nm in Ba2LuNbO6:Eu3+ phosphors exceed 1 when the content of Eu3+ is larger than 0.4 mol, because the occupation of Eu3+ ions is changed from Lu3+ ions with symmetric sites to Ba2+ ions with asymmetric sites. Besides, the optimized concentration of Eu3+ at the 5D07F2 transitions is obtained when x = 1, indicating that there is non-concentration quenching in Ba2LuNbO6:Eu3+ phosphors. Moreover, the CIE chromaticity coordinates of Ba2LuNbO6:Eu3+ was calculated to be (0.587, 0.361), the color purity was calculated to be 72.26% and internal quenching efficiency (IQE) was measured to be 67%. Finally, the thermal stability of Ba2LuNbO6:Eu3+ phosphors was also studied. Our work demonstrates that the novel double-perovskite red-emitting Ba2LuNbO6:Eu3+ phosphors are prospective red emitting elements for WLEDs applications.  相似文献   

18.
Eu3+ doped Gd2WO6 and Gd2(WO4)3 nanophosphors with different concentrations were prepared via a co-precipitation method. The structure and morphology of the nanocrystal samples were characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM), respectively. The emission spectra and excitation spectra of samples were measured. J-O parameters and quantum efficiencies of Eu3+ 5D0 energy level were calculated, and the concentration quenching of Eu3+ luminescence in different matrixes were studied. The results indicated that effective Eu3+:5D0-7F2 red luminescence could be achieved while excited by 395 nm near-UV light and 465 nm blue light in Gd2WO6 host, which was similar to the familiar Gd2(WO4)3:Eu. Therefore, the Gd2WO6:Eu red phosphors might have a potential application for white LED.  相似文献   

19.
A series of red phosphors Ca10Li (PO4)7:Eu3+ were synthesized by high temperature solid-state reaction method. Their luminescence properties were characterized by means of photoluminescence excitation and emission spectra,CIE chromaticity and quantum efficiency. Results indicated that the phosphors could be effectively excited by the near ultraviolet (NUV) light (393 nm). The main emission peaks of the phosphor were ascribed to the transition 5D0-7F2 (613 and 617 nm) of Eu3+ ion when samples were excited by...  相似文献   

20.
An efficient near-infrared (NIR) downconversion (DC) by converting broadband ultraviolet (UV) into NIR was demonstrated in YVO4:Tm3+,Yb3+ phosphors. The phosphors were extensively characterized using various methods such as X-ray diffraction, photoluminescence excitation, photoluminescence spectra and decay lifetime to provide supporting evidence for DC process. Upon UV light varying from 260 to 350 nm or blue light (473 nm) excitation, an intense NIR emission of Yb3+ corresponding to transition of 2F5/2→2F7/2 peaking at 985 nm was generated. The visible emission, the NIR mission and the decay lifetime of the phosphors of various Yb3+ concentrations were investigated. Experimental results showed that the energy transfer from vanadate group to Yb3+ via Tm3+ was very efficient. Application of the broadband DC YVO4:Tm3+,Yb3+ phosphors might greatly enhance response of siliconbased solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号