首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Attention mechanism is a simple and effective method to enhance discriminative performance of person re-identification (Re-ID). Most of previous attention-based works have difficulty in eliminating the negative effects of meaningless information. In this paper, a universal module, named Cross-level Reinforced Attention (CLRA), is proposed to alleviate this issue. Firstly, we fuse features of different semantic levels using adaptive weights. The fused features, containing richer spatial and semantic information, can better guide the generation of subsequent attention module. Then, we combine hard and soft attention to improve the ability to extract important information in spatial and channel domains. Through the CLRA, the network can aggregate and propagate more discriminative semantic information. Finally, we integrate the CLRA with Harmonious Attention CNN (HA-CNN) and form a novel Cross-level Reinforced Attention CNN (CLRA-CNN) to optimize person Re-ID. Experiment results on several public benchmarks show that the proposed method achieves state-of-the-art performance.  相似文献   

2.
针对现实场景中行人图像被遮挡以及行人姿态或视角变化造成的未对齐问题,该文提出一种基于多样化局部注意力网络(DLAN)的行人重识别(Re-ID)方法。首先,在骨干网络后分别设计了全局网络和多分支局部注意力网络,一方面学习全局的人体空间结构特征,另一方面自适应地获取人体不同部位的显著性局部特征;然后,构造了一致性激活惩罚函数引导各局部分支学习不同身体区域的互补特征,从而获取行人的多样化特征表示;最后,将全局特征与局部特征集成到分类识别网络中,通过联合学习形成更全面的行人描述。在Market1501, DukeMTMC-reID和CUHK03行人重识别数据集上,DLAN模型的mAP值分别达到了88.4%, 79.5%和74.3%,Rank-1值分别达到了95.1%, 88.7%和76.3%,明显优于大多数现有方法,实验结果充分验证了所提方法的鲁棒性和判别能力。  相似文献   

3.
4.
针对杂乱场景下难以有效地提取行人关键信息和局部遮挡时全局特征方法失效的问题,提出了一种双金字塔结构引导的多粒度行人重识别(person re-identification,ReID)方法。首先在ResNet50中嵌入注意力金字塔,引导网络由粗到细依次挖掘不同粒度的特征,使网络更倾向于关注复杂环境中行人的显著区域;其次通过结构不对称的双重注意力特征金字塔分支(double attention feature pyramid branch,DFP branch)提取多尺度的行人特征,丰富特征的多样性,同时双重注意力机制可使分支从浅层信息中捕获高细粒度的局部特征;最后将粒度较粗的全局特征与多层级细粒度的局部特征融合,两种金字塔相互作用,以此获得更多具有鉴别性的多粒度特征,改善行人遮挡问题。在多个数据集上进行了实验,结果表明,各项评价指标均高于目前大多数主流模型,其中在DukeMTMC-reID数据集上,Rank-1、mAP和平均逆负处罚(mean inverse negative penalty,mINP)分别达到了91.6%、81.9%、48.1%。  相似文献   

5.

为了提高行人重识别距离度量MLAPG算法的鲁棒性,该文提出基于等距度量学习策略的行人重识别Equid-MLAPG算法。 MLAPG算法中正负样本对在映射空间的分布不均衡导致间距超参数受负样本对距离影响更大,因此该文设计的Equid-MLAPG算法要求正样本对映射成为变换空间中的一个点,即正样本对在变换空间中距离为零,使算法收敛时正负样本对距离分布不存在交叉部分。实验表明Equid-MLAPG算法能在常用的行人重识别数据集上取得良好的实验效果,具有更好的识别率和广泛的适用性。

  相似文献   

6.
    
Due to the influence of factors such as camera angle and pose changes, some salient local features are often suppressed in person re-identification tasks. Moreover, many existing person re-identification methods do not consider the relation between features. To address these issues, this paper proposes two novel approaches: (1) To solve the problem of being confused and misidentified when local features of different individuals have similar attributes, we design a contextual relation network that focuses on establishing the relationship between local features and contextual features, so that all local features of the same person both contain contextual information. (2) To fully and correctly express key local features, we propose an uncertainty-guided joint attention module. The module focuses on the joint representation of individual pixels and local spatial features to enhance the credibility of local features. Finally, our method achieves competitive performance on four widely recognized datasets compared with state-of-the-art methods.  相似文献   

7.
    
Learning robust representations is critical for the success of person re-identification and attribute recognition systems. However, to achieve this, we must use a large dataset of diverse person images as well as annotations of identity labels and/or a set of different attributes. Apart from the obvious concerns about privacy issues, the manual annotation process is both time consuming and too costly. In this paper, we instead propose to use synthetic person images for addressing these difficulties. Specifically, we first introduce Synthetic18K, a large-scale dataset of over 1 million computer generated person images of 18K unique identities with relevant attributes. Moreover, we demonstrate that pretraining of simple deep architectures on Synthetic18K for person re-identification and attribute recognition and then fine-tuning on real data leads to significant improvements in prediction performances, giving results better than or comparable to state-of-the-art models.  相似文献   

8.
孙锐  方蔚  黄启恒  高隽 《电子与信息学报》2017,39(12):2953-2961
行人再识别就是在无重叠视域多摄像机监控系统中,识别出相同的行人。针对来自于不同摄像头行人图片存在着视角、光照和尺度变化的问题。该文提出了基于支持样本间接式匹配的行人再识别方法。该算法首先通过聚类的方法分别提取不同摄像头下的支持样本,当要对来自不同摄像头的行人进行匹配时,在距离测度的基础上利用支持样本分别判别出其所在摄像头下的行人类别,通过类别的对比判断是否为同一行人。该方法避免了不同摄像头下行人图片直接匹配,有效解决不同摄像头带来的视角、光照和尺度问题。实验结果表明该文的算法相比一些经典算法识别率有一定的提高,并且在数据集VIPeR, CAVIAR4ReID和CUHK01上,Rank1分别达到了43.60%, 41.36%, 43.82%。  相似文献   

9.
    
Video-based person re-identification (Re-ID) is of important capability for artificial intelligence and human–computer interaction. The spatial and temporal features play indispensable roles to comprehensively represent the person sequences. In this paper, we propose a comprehensive feature fusion mechanism (CFFM) for video-based Re-ID. We use multiple significance-aware attention to learn attention-based spatial–temporal feature fusion to better represent the person sequences. Specifically, CFFM consists of spatial attention, periodic attention, significance attention and residual learning. The spatial attention and periodic attention aim to respectively make the system focus on more useful spatial feature extracted by CNN and temporal feature extracted by the recurrent networks. The significance attention is to measure the two features that contribute to the sequence representation. Then the residual learning plays between the spatial and temporal features based on the significance scores for final significance-aware feature fusion. We apply our approach to different representative state-of-the-art networks, proposing several improved networks for improving the video-based Re-ID task. We conduct extensive experimental results on the widely utilized datasets, PRID-2011, i-LIDS-VID and MARS, for the video-based Re-ID task. Results show that the improved networks perform favorably against existing approaches, demonstrating the effectiveness of our proposed CFFM for comprehensive feature fusion. Furthermore, we compare the performance of different modules in CFFM, investigating the varied significance of the different networks, features and sequential feature aggregation modes.  相似文献   

10.
基于三元卷积神经网络的行人再辨识算法多数采用欧式距离度量行人之间的相似度,并配合铰链(hinge)损失函数进行卷积神经网络的训练。然而,这种作法存在两个不足:欧式距离作为行人相似度,鉴别力不够强;铰链损失函数的间隔(Margin)参数设定依赖于人工预先设定且在训练过程中无法自适应调整。为此,针对上述两个不足进行改进,该文提出一种基于新型三元卷积神经网络的行人再辨识算法,以提高行人再辨识的准确率。首先,提出一种归一化混合度量函数取代传统的度量方法进行行人相似度计算,提高了行人相似度度量的鉴别力;其次,提出采用Log-logistic函数代替铰链函数,无需人工设定间隔参数,改进了特征与度量函数的联合优化效果。实验结果表明,所提出的算法在Auto Detected CUHK03 和VIPeR两个数据库上的准确率均获得显著的提升,验证了所提出算法的优越性。  相似文献   

11.
张孟思 《移动信息》2024,46(4):301-304
文中以多源域迁移学习方法作为支持,对行人重识别策略的应用进行了分析,包括多源域迁移学习算法、行人重识别现状及其发展需求、多源域迁移学习方法下的行人重识别策略。以期为多源域迁移学习方法的合理应用与行人重识别质量的提升提供科学参考,对提高监管区域监控效能具有积极意义。  相似文献   

12.
人体目标再识别是视频监控等应用的关键问题之一。该文从外观统计特征融合的角度,利用人体的颜色和结构信息,基于空间直方图和区域协方差两种优秀的统计描述方法,研究了再识别问题的特征构建和测度选择等内容。构建特征时从图像多个层次的统计区域中提取了多类互补性较好的统计向量,设计测度时使用了简单的l1距离进行加权组合。两类统计方式融合而成的再识别方法不需要进行预处理和监督性训练过程。该文进行了广泛的实验比较和分析,验证了该文方法优异的识别性能和较强的实用性能。  相似文献   

13.
基于统计推断的行人再识别算法   总被引:1,自引:0,他引:1       下载免费PDF全文
行人再识别是指给定一张行人图像,在已有的可能来源于非交叠摄像机视场的行人图像库中,识别出与此人相同的图像。研究该问题有着非常重要的现实意义,同时也面临许多挑战。该文提出一种基于统计推断的行人再识别算法。该算法从统计推断的角度出发学习两幅行人图像的相似度度量函数,利用此函数从行人图像库中搜索待查询的人。在公共数据集VIPeR上的实验表明,该算法性能优于已有的行人再识别算法,学习相似度度量函数的时间花销明显少于已有的基于学习的算法,并且在只有少量训练样本时,缓解了学习相似度度量函数的过拟合问题。  相似文献   

14.
为了让网络捕捉到更有效的内容来进行行人的判别,该文提出一种基于阶梯型特征空间分割与局部分支注意力网络(SLANet)机制的多分支网络来关注局部图像的显著信息。首先,在网络中引入阶梯型分支注意力模块,该模块以阶梯型对特征图进行水平分块,并且使用了分支注意力给每个分支分配不同的权重。其次,在网络中引入多尺度自适应注意力模块,该模块对局部特征进行处理,自适应调整感受野尺寸来适应不同尺度图像,同时融合了通道注意力和空间注意力筛选出图像重要特征。在网络的设计上,使用多粒度网络将全局特征和局部特征进行结合。最后,该方法在3个被广泛使用的行人重识别数据集Market-1501,DukeMTMC-reID和CUHK03上进行验证。其中在Market-1501数据集上的mAP和Rank-1分别达到了88.1%和95.6%。实验结果表明,该文所提出的网络模型能够提高行人重识别准确率。  相似文献   

15.
为了提高行人再识别算法的识别效果,该文提出一种基于注意力模型的行人属性分级识别神经网络模型,相对于现有算法,该模型有以下3大优点:一是在网络的特征提取部分,设计用于识别行人属性的注意力模型,提取行人属性信息和显著性程度;二是在网络的特征识别部分,针对行人属性的显著性程度和包含的信息量大小,利用注意力模型对属性进行分级识别;三是分析属性之间的相关性,根据上一级的识别结果,调整下一级的识别策略,从而提高小目标属性的识别准确率,进而提高行人再识别的准确率。实验结果表明,该文提出的模型相较于现有方法,有效提高了行人再识别的首位准确率,其中,Market1501数据集上,首位准确率达到了93.1%,在DukeMTMC数据集上,首位准确率达到了81.7%。  相似文献   

16.
Person re-identification(ReID) is an intelligent video surveillance technology that retrieves the same person from different cameras. This task is extremely challenging due to changes in person poses, different camera views, and occlusion. In recent years, person ReID based on deep learning technology has received widespread attention due to the rapid development and excellent performance of deep learning. In this paper, we first divide person ReID based on deep learning approaches into seven types, i.e., fused hand-crafted features deep model, representation learning model, metric learning model, part-based deep model, video-based model, GAN-based model, unsupervised model. Furthermore, we launched a brief overview of the seven types. Then, we introduce some examples of commonly used datasets, compare the performance of some algorithms on image and video datasets in recent years, and analyze the advantages and disadvantages of various methods. Finally, we summarize the possible future research directions of person ReID technology.  相似文献   

17.
    
Convolutional neural networks have shown outstanding effectiveness in person re-identification (re-ID). However, the models always have large number of parameters and much computation for mobile application. In order to relieve this problem, we propose a novel grafted network (GraftedNet), which is designed by grafting a high-accuracy rootstock and a light-weighted scion. The rootstock is based on the former parts of ResNet-50 to provide a strong baseline, while the scion is a new designed module, composed of the latter parts of SqueezeNet, to compress the parameters. To extract more discriminative feature representation, a joint multi-level and part-based feature is proposed. In addition, to train GraftedNet efficiently, we propose an accompanying learning method, by adding an accompanying branch to train the model in training and removing it in testing for saving parameters and computation. On three public person re-ID benchmarks (Market1501, DukeMTMC-reID and CUHK03), the effectiveness of GraftedNet is evaluated and its components are analyzed. Experimental results show that the proposed GraftedNet achieves 93.02%, 85.3% and 76.2% in Rank-1 and 81.6%, 74.7% and 71.6% in mAP, with only 4.6M parameters.  相似文献   

18.
行人重识别的关键依赖于行人特征的提取,卷积神经网络具有强大的特征提取以及表达能力。针对不同尺度下可以观察到不同的特征,该文提出一种基于多尺度和注意力网络融合的行人重识别方法(MSAN)。该方法通过对网络不同深度的特征进行采样,将采样的特征融合后对行人进行预测。不同深度的特征图具有不同的表达能力,使网络可以学习到行人身上更加细粒度的特征。同时将注意力模块嵌入到残差网络中,使得网络能更加关注于一些关键信息,增强网络特征学习能力。所提方法在Market1501, DukeMTMC-reID和MSMT17_V1数据集上首位准确率分别到了95.3%, 89.8%和82.2%。实验表明,该方法充分利用了网络不同深度的信息和关注的关键信息,使模型具有很强的判别能力,而且所提模型的平均准确率优于大多数先进算法。  相似文献   

19.
20.
陈莹  陈巧媛 《电子与信息学报》2020,42(12):3037-3044
为减轻行人图片中的背景干扰,使网络着重于行人前景并且提高前景中人体部位的利用率,该文提出引入语义部位约束(SPC)的行人再识别网络.在训练阶段,首先将行人图片同时输入主干网络和语义部位分割网络,分别得到行人特征图和部位分割图;然后,将部位分割图与行人特征图融合,得到语义部位特征;接着,对行人特征图进行池化得到全局特征;...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号