共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
针对最小二乘支持向量机(LSSVM)用于预测矿用动力电池荷电状态(SOC)时正则化参数和核函数参数难以优化选择,灰狼优化(GWO)算法在单独求解约束优化问题时出现早熟、稳定性差、易陷入局部最优等问题,在差分进化灰狼优化(DE-GWO)算法的基础上,采用指数函数形式的非线性收敛因子对DEGWO算法进行改进。该非线性收敛因子在迭代过程前段衰减速率低,能更好地寻找全局最优解,在迭代过程后段衰减速率高,能更精确地寻找局部最优解,有效平衡全局搜索能力和局部搜索能力。实验结果表明,利用改进DE-GWO算法优化LSSVM参数后建立的矿用动力电池SOC预测模型最大绝对误差为3.7%,最大相对误差为5.3%。 相似文献
4.
针对基于安时计量法的矿用可移动救生舱蓄电池荷电状态SOC估计在环境温度或放电电流波动较大的情况下精度较低的问题,提出了一种基于扩展卡尔曼滤波法的矿用可移动救生舱蓄电池SOC估计方法。该方法在安时计量法的基础上,把影响蓄电池SOC估计的环境温度和放电电流因素作为蓄电池系统的噪声,采用扩展卡尔曼滤波法的优化估计递推算法对蓄电池SOC进行实时滤波与估计,从而提高了蓄电池SOC的估计精度。实验结果表明,该方法的蓄电池SOC估计结果与实测值基本一致,可用于矿用可移动救生舱蓄电池管理系统中。 相似文献
5.
电池荷电状态(state of charge,SOC)的精确估计是判断电池是否过充或过放的重要依据,是电动汽车安全、可靠运行的重要保障.传统基于扩展卡尔曼滤波(extended Kalman filter,EKF)的SOC估计方法过度依赖于精确的电池模型,并且要求系统噪声必须服从高斯白噪声分布.为解决上述问题,基于模糊神经网络(fuzzy neural network,FNN)建立模型误差预测模型,并藉此修正扩展卡尔曼滤波测量噪声协方差,以实现当模型误差较小时对状态估计进行测量更新,而当模型误差较大时只进行过程更新.仿真和实验结果表明,该算法能有效消除由于模型误差和测量噪声统计特性不确定而引入的SOC估计误差,误差在1.2%以内,并且具有较好的收敛性和鲁棒性,适用于电动汽车的各种复杂工况,应用价值较高. 相似文献
6.
近几年,磷酸铁锂动力电池逐渐成为电动汽车动力电池首选.但是由于材料本身特性,使得磷酸铁锂电池的荷电状态难以精确估算.当电动汽车处于复杂工作环境时,荷电状态估计在保证电动汽车电池操作中的安全性和可靠性方面起到了至关重要的作用.文章采用戴维宁等效电路模型,验证无迹卡尔曼滤波和粒子滤波两种方法的估算效果,并分别与扩展卡尔曼滤波方法作对比,结果证明无迹卡尔曼滤波和粒子滤波都具有更好的估算精度. 相似文献
7.
8.
9.
考虑到锂离子电池荷电状态(SOC)估计中,初始SOC值的不确定性对估计精度有显著影响,提出了一种融合初值补偿机制的自适应分数阶扩展卡尔曼滤波(AFEKF)方法.依据电池的分数阶特性,构建了一个包含两个恒定相位单元的分数阶等效电路模型,并对描述电池充放电全程的分数阶等效电路模型方程进行了离散化处理.为了提升SOC估计在复杂工况下的适应性,采用了线性卡尔曼滤波器对测量方程中的系数进行在线辨识.此外,为了解决离散化状态方程中参数、分数阶阶数、等效电路模型初值以及噪声不确定性问题,引入了Sage-Husa滤波器和带有初值补偿的AFEKF方法.最后,通过对比实验分析了带有初值补偿的AFEKF与不带有初值补偿的AFEKF的性能差异,并在不同工况下进行了带有初值补偿的AFEKF的SOC估计实验.实验结果表明,所提出的SOC估计方法在复杂工况下具有较强的适应性. 相似文献
10.
基于鲁棒H∞滤波的蓄电池荷电状态估计 总被引:1,自引:0,他引:1
针对蓄电池系统的荷电状态(SOC)受蓄电池材料及加工制作、工作温度、充放电大小及频率等因素的影响,是一个典型的非线性时变系统,相应的状态估计模型在测量过程中存在噪声干扰引起模型参数不确定性的特征。以安时法为基础,建立SOC的状态方程并应用鲁棒H∞滤波算法预测SOC估计值。仿真研究表明,提出的鲁棒H∞滤波算法在有色噪声干扰下比卡尔曼滤波(Kalman filter)有更好的估计精度;在白噪声情况下,鲁棒H∞滤波算法可通过调节其参数达到和卡尔曼滤波器相同的估计精度。 相似文献
11.
针对锂电池等效电路模型无法在荷电状态(SOC)全区间精确反映锂电池内部真实状态的问题,提出了基于多输入多输出(MIMO)模糊控制的参数自适应等效电路模型.该等效电路模型以新一代汽车伙伴关系(PNGV)模型为自适应原型,根据锂离子电池和PNGV模型的外特性参数差异,由MIMO模糊调节器动态实时修正模型参数,达到精确建模、反映电池内部真实状态的目的.实验验证了自适应参数对模型精度和自适应性能的影响及模型在变工况下的模拟效果.通过对比锂电池参数自适应模型和静态参数PNGV模型的扩展卡尔曼滤波算法估计SOC的误差,验证了参数自适应模型的有效性. 相似文献
12.
锂电池电池管理的核心是电池荷电状态(SOC)的实时准确估算。为精确实时估算SOC值,以无人机(UAV)锂电池为研究对象,建立戴维南等效电路模型,对电池进行试验测量、研究分析。首先,运用开路电压法标定锂电池的估算初值,在卡尔曼滤波算法的基础上进一步改良优化得到扩展卡尔曼滤波(EKF)算法。然后,将该算法运用到SOC估算中,即可在较短时间内高精度的估算出无人机锂电池的实时SOC值。在MATLAB/Simulink中搭建对应电池模型输入算法进行运行,并对得到的结果与实际数据进行比较、论证。试验表明,基于戴维南模型的EKF算法能很好地对无人机锂电池SOC进行估算,收敛效果好而且估算精度高于98.5%。扩展卡尔曼算法可以很准确地估算出无人机锂电池的实时SOC值。 相似文献
13.
基于Thevenin模型和UKF的锂电池SOC估算方法研究 总被引:1,自引:0,他引:1
为解决在多种工况下锂电池实时估算困难、估算精度不高等问题,以三元锂电池为研究对象,建立Thevenin模型,对电池的工作特性进行表征。综合多种工况对锂电池工作特性进行研究分析,避免了依据电池内部复杂结构建立等效模型的困难。考虑到估算初期荷电状态(SOC)准确性对于后期估算的重要性,首先用开路电压法标定初值,然后运用无迹卡尔曼滤波(UKF)算法进行估算跟踪。UKF算法基于无迹变换,没有忽略高阶项,对于非线性分布具有较高的计算精度。在Matlab/Simulink中搭建仿真模型并结合多种工况数据进行分析。试验结果表明,Thevenin模型能够较好地对锂电池SOC进行估算,收敛速度快、跟踪效果好且能将估算误差控制在0.8%以内,验证了UKF在对锂电池进行SOC估算时具有较高的精度。 相似文献
14.
15.
磷酸铁锂电池的SOC预测 总被引:1,自引:0,他引:1
电池荷电状态(SOC)准确预测是电池管理系统的关键任务.针对过去电池SOC预测精度低等问题,提出了一种采用极限学习机神经网络(ELM)的预测模型,以电池电压和电流作为模型的输入量,SOC作为输出量.在建模过程中,采用粒子群优化算法(PSO)对ELM随机给定的输入权值矩阵和隐层阈值进行寻优,降低了随机性给模型造成的影响,提高了模型预测精度.利用实验采集的数据进行模型训练和预测,结果表明,用粒子群算法优化后的极限学习机模型(PSOELM)与单纯的ELM以及传统的BP和SVM相比,具有更高的预测精度和泛化性能.为磷酸铁锂电池的SOC预测提供了一种新的方法. 相似文献
16.
17.
基于小波变换的卡尔曼滤波动力电池SOC估算 总被引:1,自引:0,他引:1
混合动力电动汽车的动力电池和电池管理系统的工程实际应用环境是非常恶劣的,导致信号采样过程中包含大量的系统噪声和测量噪声.因此,提出一种基于小波变换的卡尔曼滤波动力电池SOC估算方法,通过在一系列充放电实验所建立的动力电池系统模型上,利用小波变换自相似过程的去相关作用和多尺度多分辨的特性对噪声进行抑制,实时对测量信号多尺度滤波分解,再采用卡尔曼滤波的迭代递推的线性无偏最小方差估计特性对电池SOC进行估算.实验结果表明,提出的基于小波变换的卡尔曼滤波SOC估算方法效果优于标准的卡尔曼滤波算法,在实际工况中,具有较强的适应性. 相似文献
18.
基于一阶Thevenin模型的扩展卡尔曼滤波在实际工程应用中,因为要对系数求其雅各比矩阵,略去了高阶项所表示的部分电池特征,在电池电流变化剧烈情况下极易失真,不能真实地反映电池状态.论文提出了基于二阶Thevenin模型的无迹卡尔曼滤波算法,二阶模型本身就能更加真实地反映电池状态,同时该算法不是对数据进行切割处理,而是... 相似文献
19.
20.
针对移动电源存在的不能自动续充问题,设计了一种自动充放电电路,并对常见锂电池过压过流保护、电池电量监测问题提出了相应的改进电路.应用普遍使用的STC15 W401 AS、SX2105、DS2762芯片作为核心器件,配合相应外围电路,为基于单片机的锂离子电池充放电保护电路的应用提供了一种参考. 相似文献