首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of novel red-emitting BaLiZn3(BO3)3:Eu3+ phosphors were synthesized through the high temperature solid state reaction method. The phase composition, crystal structure, morphology and photoluminescence property of the BaLiZn3(BO3)3:Eu3+ samples were systematically investigated. The phosphor can be efficiently excited by the near ultraviolet light (NUV) of 396 nm and blue light of 466 nm, and give out red light emission at 618 nm corresponding to the electric dipole transition (5D07F2). The optimal doping concentration of Eu3+ ions in BaLiZn3(BO3)3 is determined to be about 3 mol%, and the concentration-quenching phenomenon arise from the electric dipole–dipole interaction. The temperature dependent luminescence behavior of BaLiZn3(BO3)3:0.03Eu3+ phosphor exhibits its good thermal stability, and the activation energy for thermal quenching characteristics is calculated to be 0.1844 eV. The decay lifetime of the BaLiZn3(BO3)3:0.03Eu3+ is measured to be 1.88 ms. These results suggest that the BaLiZn3(BO3)3:Eu3+ phosphors have the potential application as a red component in white light emitting diodes (WLEDs) with NUV or blue chips.  相似文献   

2.
As a cyan-emitting oxonitridosilicate phosphor,BaSi2O2N2:Eu2+can be used as a competent cyan compensator to improve the color rendering index of white light-emitting diodes(WLEDs).However,low luminescence efficiency and poor thermal stability of this type of phosphor seriously suppress its actual application in full-spectrum lighting.The replacements of Ba2+by Lu3+and Ba2+-Si4+by Lu3+-Al3+can greatly increase the luminescence intensity and improve the thermal stability at the same time.With Lu3+doping,the internal quantum efficiencyηIQE Ba0.925Si2O2N2:0.03 Eu2+,0.045 Lu3+is 24.08%higher than that of Ba0.97Si2O2N2:0.03 Eu2+.After Al3+co-doping,theηIQE is further increased by 10.31%compared to Ba0.925Si2O2N2:0.03 Eu2+,0.045 Lu3+.When the temperature rises to 473 K,the luminescence intensity of Ba0.925Si2O2N2:0.03 Eu2+,0.045 Lu3+maintains 62.32%of that at room temperature,which increases by 17.35%in relative to the Ba0.97Si2O2N2:0.03 Eu2+,while the luminescence intensity of Ba0.925Si1.97O2N2:0.03 Eu2+,0.045 Lu3+,0.03 Al3+keeps 73.87%of the initial value,which increases by18.52%compared to Ba0.925Si2O2N2:0.03 Eu2+,0.045 Lu3+.The mechanisms for luminescence and thermal stability improvement are proposed.The Ba0.925Si1.97O2N2:0.03 Eu2+,0.045 Lu3+,0.03 Al3+cyan phosphor,Y3 Al5 O12:Ce3+yellow phosphor and CaAlSiN3:Eu2+red phosphor are mixed thoroughly and coated on a blue LED(450 nm)to assemble a WLED.The WLED demonstrates a color rendering index(Ra)of 97.1 at150 mA,and the R1-R15 values are all above 90.The results indicate that as an effective cyan compensator in WLED,the BaSi2O2N2:Eu2+,Lu3+,Al3+phosphor has great application prospect in the field of full-spectrum lighting.  相似文献   

3.
Red phosphor,with longer wavelength,is highly desirable for full-spectrum WLEDs.Targeted deep red phosphors(Sr,Gd)Li(AI,Mg)3N4:Eu2+ were designed from the initial model of SrLiAl3N4:Eu2+ by structural modification.The correlations among structural evolution,crystal-field environment,and luminescence properties were elucidated.Replacing Sr2+ with Gd3+in(Sr,Gd)LiAl3N4:Eu2+ leads...  相似文献   

4.
A series of red phosphors M3BO6:Eu3+ (M=La, Y) were synthesized at 1150 °C by conventional solid state reaction method and their luminescent properties were investigated. Structural characterization of the luminescent materials was carried out with X-ray powder diffraction (XRD) analysis. Photoluminescence measurements indicated that the La3BO6:Eu3+ phosphor exhibited bright red emission centered at about 612 nm 626 nm under UV excited. La3BO6:Eu3+ phosphor had better luminescent intensity than Y3BO6:Eu3+ phosphors under the same excitation and measuring conditions. It was shown that the 0.08 mol.% Eu3+ ions in La3BO6:Eu3+ phosphors was optimal. The color parameter indicated that La3BO6:Eu3+ phosphor was a preferable red phosphor for white LED.  相似文献   

5.
CaTiO3:Eu3+ red phosphors were prepared using H3BO3 assisted solid state synthesis. The structure and morphology of the obtained sample were observed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). And the luminescence property was measured using photoluminescence excitation (PLE) and photoluminescence (PL) spectra, respectively. In the excitation spectra, main excitation peaks of the prepared samples were centered at 397 and 465 nm, revealing that these phosphors could be excited by commercial GaN- and InGaN-typed light emitting diodes (LEDs). Dominant emission peaks of the phosphors were located at 616 nm, owing to the transition of 5D07F2 of Eu3+. In the optimum condition, CaTiO3:3%Eu3+ phosphor was obtained at a sintering temperature of 1200 °C in air with a content of 20 mol.% H3BO3 addition. When excited by 397 nm irradiation, the PL intensity of as-prepared red phosphor was 2.2 times higher than that of samples obtained by traditional solid state synthesis, while the PL intensity was 3 times higher than that excited by 465 nm irradiation. The added H3BO3 improved the crystallinity, and increased the color purity, implying the potential to be a promising red phosphor in white light emitting diodes (WLEDs).  相似文献   

6.
White light-emitting diodes (WLEDs) fabricated by single-phase full color emitting phosphor are an emerging solution for health lighting. The crystallographic site occupation of activators in a proper host lattice is crucial for sophisticated design of such phosphor. Here, we report a high quality white light-emitting phosphor Ba2Ca(BO3)2:Ce3+(K+),Eu2+,Mn2+ with spectral distribution covering whole visible region. Blue light emission originates from Ce3+ ions occupying preferentially Ba2+ site by controlling synthesis conditions. Green and red lights are obtained from Eu2+ occupying Ba2+ (and Ca2+) site and Mn2+ occupying Ca2+ site, respectively. In this triple-doped phosphor, strong red emission with a low concentration of Mn2+ is realized by the efficient energy transfer from Ce3+ and Eu2+ to Mn2+. Furthermore, high quality white light is accomplished by properly tuning the relative doping amount of Ce3+(K+)/Eu2+/Mn2+ based on efficient simultaneous energy transfer. The results indicate that Ba2Ca(BO3)2:Ce3+(K+),Eu2+,Mn2+ is a promising white light-emitting phosphor in WLEDs application.  相似文献   

7.
A novel non-contact optical thermometer, qualified with high sensitivity and temperature resolution, is urgently needed for temperature measuring of micro devices, moving objects and specific severe environments. Hence, a series of dual-emitting La5Si2BO13:Ce3+,Eu2+ phosphors were synthesized. The two ions show diverse responses with the changing in temperature. The variational emissions of Ce3+ and Eu2+ can be converted to FIR (fluorescence intensity ratio) signals. The maximal absolute sensitivity Sa and relative sensitivity Sr reach up to 0.07526%/K and 3.2241%/K, respectively. It is worthy noting that the Sa and Sr possess the same variation tendency and both have high values in the low temperature region (293–373 K), showing the great temperature measuring property especially in low temperature region. The temperature sensing characteristics are superior to the results of most previous reports. The energy transfer (ET) process is certified to occur from Ce3+ to Eu2+ ions. These studies indicate that La5Si2BO13: Ce3+,Eu2+ phosphor could have a good prospect for optical thermometry.  相似文献   

8.
Gd2InSbO7:Eu3+ red phosphors were successfully synthesized via high-temperature solid–state reaction. The phase purity, particle size, and luminescence properties of obtained phosphors were measured and analyzed in detail. The Gd2InSbO7 lattice possesses cubic structure with Fd-3m (227) space group. The phosphors emit bright red emission at 628 nm under 393 nm excitation, and this phenomenon is attributed to the 5D07F2 transition. The Judd–Ofelt parameters (Ω2, Ω4), transition ratio, and branching ratios (β) of Eu3+-doped Gd2InSbO7 phosphor were calculated on the basis of the emission spectra and decay lifetimes. The optimal content in Gd2InSbO7:xEu3+ is identified to be 15 mol%. The thermal quenching of Gd2InSbO7:Eu3+ is found to be over 500 K, and its activation energy is 0.26 eV. The Commission Internationale de l'Eclairage (CIE) chromaticity coordinates of Gd2InSbO7:15%Eu3+ are (0.629, 0.371), which are close to ideal red chromaticity coordinates (0.670, 0.330). The fabricated w-LED exhibits good color rendering index (Ra) (86), correlated color temperature (CCT) (6997 K), and CIE chromaticity coordinates (0.302, 0.330). The obtained results demonstrate that Gd2InSbO7:Eu3+ phosphors have potential applications in white LEDs.  相似文献   

9.
Eu2+-doped bromophosphateapatite Sr5(PO4)3Br phosphors were synthesized by the conventional high-temperature solid-state reaction. The crystal structure and luminescence properties of the phosphors, as well as their thermal stability and CIE chromaticity coordinates were systematically investigated. Photoluminescence spectra of Sr5(PO4)3Br:Eu2+ exhibit a single blue emission at 450 nm under the excitation of 345 nm, which is ascribed to the 4f–5d transition of Eu2+. The phosphor shows very good thermal stability. The CIE color coordinates are very close to those of BaMgAl10O17:Eu2+ (BAM). All the properties indicate that the blue-emitting Sr5(PO4)3Br:Eu2+ phosphor has potential application in white LEDs.  相似文献   

10.
Red emitting phosphors play a significant role in accelerating the improvement of illumination quality for white light emitting diodes (WLEDs). In this work, by using solid-state reaction method, an efficient novel Ba2LuNbO6:Eu3+ phosphor with double-perovskite structure was successfully prepared. Here, a series of Ba2LuNbO6:Eu3+ red phosphors can be efficiently pumped by the near-ultraviolet (UV) light and then present high-brightness at orange emission (598 nm, 5D07F1) and red emission (610 nm, 5D07F2). The ratio values of 610 to 598 nm in Ba2LuNbO6:Eu3+ phosphors exceed 1 when the content of Eu3+ is larger than 0.4 mol, because the occupation of Eu3+ ions is changed from Lu3+ ions with symmetric sites to Ba2+ ions with asymmetric sites. Besides, the optimized concentration of Eu3+ at the 5D07F2 transitions is obtained when x = 1, indicating that there is non-concentration quenching in Ba2LuNbO6:Eu3+ phosphors. Moreover, the CIE chromaticity coordinates of Ba2LuNbO6:Eu3+ was calculated to be (0.587, 0.361), the color purity was calculated to be 72.26% and internal quenching efficiency (IQE) was measured to be 67%. Finally, the thermal stability of Ba2LuNbO6:Eu3+ phosphors was also studied. Our work demonstrates that the novel double-perovskite red-emitting Ba2LuNbO6:Eu3+ phosphors are prospective red emitting elements for WLEDs applications.  相似文献   

11.
A series of Eu~(2+)doped and Eu~(2+)/Mn~(2+) co-doped Mg_(0.695)Si_(0.695)Al_(1.39)O_(3.65)N_(0.35)(MSAON) phosphors were synthesized by solid-state reaction at a lower temperature of 1500℃.The crystal morphology and structure of MSAON host were characterized by SEM,TEM and XRD.The quantum yield(QY) for Eu~(2+)doped MSAON phosphors was measured as high as 62%,indicating the excellent luminous efficiency.For the Eu~(2+)/Mn~(2+)co-doped MSAON phosphor,the photoluminescence spectrum and delay curves reveal the efficient energy transfer(ET) process from Eu2+to Mn~(2+)ions.Meanwhile,the corresponding energy transfer efficiency,critical distance and mechanism are discussed in detail.Temperature-dependent emission spectrum shows the thermal and color stabilities.The emission color of MSAON:Eu~(2+),Mn~(2+)phosphors could be tuned from blue through white to red via varying the concentration of Mn~(2+) ions.White-light-emitting diodes(WLEDs) were successfully fabricated by encapsulating the phosphors in nUV LED(365 nm) devices obtaining white light with color rendering index(CRI) as high as 87.7.The results reveal that the MSAON:Eu~(2+),Mn~(2+)phosphors could have potential application in the field of n-UV WLEDs.  相似文献   

12.
La2Mg1-x/2Zr1-x/2O6:xBi3+(x=0.01-0.035,abbreviated as LMZ:Bi3+) and La2-yMg0.99Zr0.99O6:0.02Bi3+,yEu3+(y=0.1-0.11,abbreviated as LMZ:Bi3+,Eu3+) double-perovskite phosphors were prepared through high-temperature solid-phase method.The emission spectrum of LMZ:xBi3+(x=0.01-0.035)phosphors excited at 353 nm is asymmetric in the range be...  相似文献   

13.
The BaGd_(2-2 x)Eu_(2 x)O_4(BG, x = 0.01-0.09) phosphors were successfully synthesized via the sol-gel method,and BaY_(2-2 y)Eu_(2 y)O_4(BY, y = 0.005-0.07) phosphors were included for comparison. The pure phase BG phosphors with the ordered CaFe_2 O_4-type structure are obtained by annealing at 1300℃ for5 h. The phosphors with uniform particle size of 120 nm and good dispersion display typical Eu~(3+)emission with the strongest peak at 613 nm(~5 D_0→~7 F_2 transition of Eu3+) under optimal excitation band at 262 nm(CTB band). The presence of Gd~(3+) excitation bands on the PLE spectra monitoring the Eu3+emission directly proves an evidence of Gd~(3+)-Eu~(3+) energy transfer. Owing to the concentration quenching, the optimum content of Eu3+ addition is 5 at%(x = 0.05), and the quenching mechanism is determined to be the exchange reaction between Eu3+. All the BG samples have similar color coordinates and temperature of(0.64 ± 0.02, 0.36 ± 0.01) and 2000 ± 100 K,respectively. The lifetime value of BaGd_(1.9)Eu_(0.1)O_4 for 613 nm is fitted to be 2.19 ± 0.01 ms, and the Eu~(3+) concentration does not change the lifetime significantly. Owing to the Gd~(3+)-Eu~(3+) energy transfer, the luminescent intensity of the BaGd_(1.9)Eu_(0.1)O_4 phosphor is better than BY system. The BG system served as a new type of phosphor is expected to be widely used in lighting and display areas.  相似文献   

14.
The long afterglow luminescent material SrAl2O4: Eu2+, Dy3+ was prepared by high temperature solid-state method. Effects of doped B on the luminescent properties of phosphors SrAl2O4: Eu2+, Dy3+ were investigated by means of excitation spectra, emission spectra and X-ray diffraction analysis. As the result, the addition of H3BO3 as flux promotes the growth of crystalline and reduces the synthesizing temperature, but the wavelength of emission peak of photoluminescent material did not change with the variation of H3BO3 content. The effect of Dy3+ concentration on the luminescent properties of material was investigated. It was found that the luminescence of phosphors prepared under the condition of the amount of H3BO3 5% and the mole ratio of Eu/Dy = 1/7(Eu = 0.02 mole) had better luminescent property and longer afterglow time.  相似文献   

15.
Wide color gamut(WCG) backlight for liquid crystal display(LCD) utilizing white light-emitting diodes(LED) has attracted considerable attention for their high efficiency and color reduction.In this review,recent developments in crystal structure,luminescence and applications of phosphors for wide color gamut LED backlight are introduced.As novel red phosphors,Mn~(4+)activate fluoride and aluminate phosphors are advanced in quantum efficiency,thermal quenching and color saturation for their characteristic spectrum with broad excitation band and linear emission.The crystal structure and fluorescence properties of Mn~(4+)doped fluosilicate,fluorogermanate,fluotitanate,as well as Sr_4 Al_(14)O_(25),CaAl_(12)O_(19) and BaMgAl_(10)O_(17) phosphors are discussed in detail.A serial of narrow-band red-emitting Eu~(2+),Eu~(3+)and Pr~(3+)-doped nitride silicates and molybdate phosphors are also introduced.Rare-earth-doped oxynitride and silicate green-emitting phosphors have attracted more and more attention because of the wide excitation,narrow emission,high quenching temperature,high quantum efficiency,such as β-sialon:Eu~(2+),Ba_3Si_6O_(12)N_2:Eu~(2+),MSi_2O_2N_2:Eu~(2+)(M=Ca,Sr,Ba),y-AlON:Mn~(2+)and Ca_3Sc_2Si_3O_(12):Ce~(3+).All above phosphors demonstrate their adaptability in wide color gamut LCD display.Especially for Mn~(4+)doped fluosilicate red phosphor and β-sialon:Eu~(2+)green phosphor.To achieve an ultra-high color gamut in white LED backlight and against the OLED,innovative narrow-band-emission red and green phosphor materials with independent intellectual property rights are continuously pursed.  相似文献   

16.
A series of new oxyapatite red phosphors Ca3Y7(BO4)(SiO4)5O doped with different concentrations of Eu3+ were successfully synthesized by high temperature solid state method. The X-ray diffraction (XRD) Rietveld refinement results show that the structure of the phosphor belongs to space group P63/m and Eu3+ ion replaces Y3+ ion. The emission spectrum consists of the characteristic emission peaks corresponding to Eu3+ under the excitation of 274 nm and the dominant emission peak is at 614 nm (5D07F2 of Eu3+). The concentration quenching effect occurs and the optimized Eu3+ concentration is 4.0 mol%. The energy level diagram for luminous mechanism is also given and the non-radiative energy transfer mechanism between Eu3+ is mainly exchange interaction. The CIE coordinate is close to the ideal red light and the color purity is higher than 99.79%. Moreover, the phosphor exhibits moderate thermal stability because the photoluminescence intensity at 423 K is still maintained at higher than 78.97% of that at room temperature. The internal quantum efficiency of Ca3Y7(BO4)(SiO4)5O:4.0 mol%Eu3+ phosphor is 58.2%. A red light emitting diode (LED) device based on it can emit bright red light. The CCT values of the device are basically unchanged when driven by various bias current. The results show that Ca3Y7(BO4)(SiO4)5O:Eu3+ is a new type of oxyapatite red fluorescent material with good comprehensive performances.  相似文献   

17.
In order to effectively improve the afterglow properties of CaAl_2 O_4:Eu~(2+),Nd~(3+) phosphors,a series of Ca_(0.982-x)Al_2 O_4:0.012 Eu~(2+),0.006 Nd~(3+),xGd~(3+)(x=0,0.012,0.024,0.036,0.048,0.060 mol) phosphors were prepared by a high-temperature solid-phase approach.Crystalline composition and microstructure were characterized by XRD,TEM,HRTEM,and XPS,luminescence properties were systematically analyzed by fluorescence spectra,afterglow decay curves and TL glow curve.Results show that all of Ca_(0.982-x)Al_2 O_4:0.012 Eu~(2+),0.006 Nd~(3+),xGd~(3+)phosphors belong to monoclinic CaAl_2 O_4,without other cystalline phase.The blue emission at 442 nm is observed,which is assigned to the 4 f~65 d→4 f~7 transition of Eu~(2+) ions.Doping with appropriate amount of Gd~(3+) ions(x=0.036 mol) significantly improves the afterglow properties of phosphors,but the excessive doping of Gd~(3+) induces the fluorescent quenching.The doping of moderate Gd3+changes the traps states,the trap depth varies from 0.598 to 0.644 eV and the trap concentration is also greatly improved,thus significantly improving afterglow performance.  相似文献   

18.
The Gd2O2CO3:Eu^3+ with type-Ⅱ structure phosphor was successfully synthesized via flux method at 400 ℃ and their photoluminescence properties in vacuum ultraviolet (VUV) region were examined. The broad and strong excitation bands in the range of 153-205 nm owing to the CO3^2- host absorption and charge transfer (CT) of Gd^3+-O2^- were observed for Gd2O2CO3:Eu^3+. Under 172 nm excitation, Gd2O2CO3:Eu^3+ exhibited strong red emission with good color purity, indicating Eu^3+ ions located at low symmetry sites and the chromaticity coordination of luminescence for Gd2O2CO3:Eu^3+ was (x=0.652, y=0.345). The photoluminescence quenching concentration of Eu^3+ excited by 172 nm for Gd2O2CO3:Eu^3+ was about 5%. Gd2O2CO3:Eu^3+ would be a potential VUV-excited red phosphor applied in mercury-free fluorescent lamps.  相似文献   

19.
The(Gd_(0.97-x)Eu_xTb_(0.03))AIO_3(x= 0.005-0.07) phosphors were synthesized by the co-precipitation method,using ammonium bicarbonate as a precipitant.The combined technologies of FT-IR,XRD,FESEM,PLE/PL and photo luminescence decay analysis were used to study the phase evolution,morphologies and luminescent properties.The phosphors with good dispersion exhibit strong vivid red emission located at 617 nm(~5 D_0-~7 F_2 transition of Eu~(3+)) under the optimal excitation wavelength of 275 nm(~4 f~8-4 f~75 d~1 transition of Tb~(3+),~8 S_(7/2)→6~I_J transition of Gd~(3+)).The presence of Gd~(3+) and Tb~(3+) excitation bands on the PLE spectra monitoring the Eu~(3+) emission directly gives an evidence of Tb~(3+) → Eu~(3+) and Gd~(3+) → Eu~(~(3+)) energy transfer,The emission intensity varies with the Eu~(3+) amount,and the quenching concentration is ~5 at% which is close to the calculated value.The quenching mechanism is determined to be the exchange reaction between Eu~(3+).The temperature-dependent PL analysis indicates that the best(Gd_(0.92)Eu_(0.05)Tb_(0.03))AlO_3 sample possesses good thermally stable properties.All the(Gd_(0.97-x)Eu_xTb_(0.03))AIO_3 phosphors in this work have similar CIE chromaticity coordinates and color temperatures,which are(0.65 ± 0.02,0.35 ± 0.02) and ~2558 K,respectively.Fluorescence decay analysis shows that the lifetime for~617 nm emission decreases with the content of Eu~(3+) and temperature increasing.Owing to the Tb~(3+)→ Eu~(3+) energy transfer,the luminescent properties of the(Gd_(0.92)Eu_(0.05)Tb_(0.03))AlO_3 phosphors are superior to the single Eu~(~(3+)) doped sample(Gd_(0.95)Eu_(0.05))AlO_3.As a result,the prepared phosphors may be widely used in solid-state display and light emitting devices.  相似文献   

20.
YAl3 (BO3)4: Eu^3+ phosphors were prepared by the conventional solid state reaction. The phase structure and morphology were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). Doping YAl3(BO3)4: Eu^3+ phosphors with concentration of Eu^3+ ions of 0, 2, 5, 8 and 10 mol% were studied and their luminescent properties at room temperature were discussed. The excitation spectrum of Y0.95Eu0.05Al3(BO3)4 was composed of a broad band centered at about 252 nm and a group of lines in the longer wavelength region. In the emission spectra, the peak wavelength was about 614 nm under a 252 nm UV excitation. The optimal doping concentration of Eu^3+ ions in YAl3(BO3)4: Eu^3+ phosphors was 8 mol%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号