首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
Alkali metal K in exhaust gas has a deactivation effect on NH3-SCR catalysts.In this work,it is discovered that the addition of Ho on CeTi catalyst can remarkably strengthen its K tolerance.The conclusions of Brunauer-Emmett-Teller(BET),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),NH3 temperature programmed desorption(NH3-TPD)and H2temperature programmed reduction(H2-TPR)analyses demonstrate that the enhancement of K resistance mainly originates from its stronger surface acidity and redox capability,the higher concentration of Ce3+species and surface chemisorbed oxygen.In situ DRIFT analysis reveals that the introduction of Ho on CeTi can remarkably improve the adsorption of NH3 and NOx species on catalyst surface,accompanied by the intensified reactivity of ad-NH3 species,which should also administer to improve the K resistance.  相似文献   

2.
In this study,Kx-Mn-Ce catalysts prepared by sol-gel method were investigated for toluene oxidation.Compared with Mn-Ce,the catalytic performance of Kx-Mn-Ce was further improved.X-ray diffraction(XRD),high resolution transmission electron microscopy(HRTEM) and Raman analyses demonstrate that K ions enter the lattice of CeO2 and disperse uniformly.The results of X-ray photoelectron spectroscopy(XPS),H2-temperature programmed reduction(H2-TPR...  相似文献   

3.
Large amounts of water containing-ammonium nitrogen(NH4+-N)have attracted increasing attention.Catalytic ozonation technology,involving the generation of hydroxyl radical(OH)with strong oxidation ability,was originally utilized to degrade organic-containing wastewater.In this paper,Ce/MnOx composite metal oxide catalysts prepared with different preparation conditions were used to degrade wastewater containing inorganic pollutant(NH4+-N).The as-prepared catalyst features were characterized using X-ray diffraction(XRD),Brunauer-Emmett-Teller method(BET),scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDS),Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS)and H2-temperature programmed reduction(H2-TPR)techniques.The results show that the catalyst,prepared by conditions with precipitant Na2CO3 and Ce/Mn molar ratio 1:2 calcined at 400℃for 3 h in pH 11.0,displays the optimal performance,with the removal rate of NH4+-N and selectivity to gaseous nitrogen,88.14 wt%and 53.67 wt%,respectively.The effects of several operating factors including solution pH,initial NH4+-N concentrations and scavengers were evaluated.In addition,XRD patterns of catalyst with the best performance and the comparative study on decontamination of NH4+-N by various processes(O3,catalyst and catalyst/O3)show that the primary metal oxides are CeO2 and MnO2 in Ce/MnOx composite metal oxide catalysts,which have a synergistic effect on the catalytic ozonation of NH4+-N,and the new phase MnO2 plays a great role.After 5 consecutive use cycles,the degradation efficiency is declined slightly,and can still achieve better than 70 wt%over 1 h reaction.Additionally,the application of catalytic ozonation for actual wastewater on the removal rate of NH4+-N was investigated.Possible mechanism and degradation pathway of NH4+-N were also proposed.In a word,the application of CeO2-MnO2 composite metal oxide catalysts in catalytic ozonation can be regarded as an effective,feasible and promising method for the treatment of NH4+-N.  相似文献   

4.
Selective hydrogenation of unsaturated aldehydes remains a grand challenge in controlling chemoselectivity up to now.We synthesized a series of PtFex/CeO2 catalysts,which were characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS) as well as temperature-programmed-reduction by hydrogen(H2-TPR).The catalytic performance of PtFex/CeO2,including cinnamaldehyde(CAL) conversion and sele...  相似文献   

5.
Three Sn-decorated ceria catalysts with various morphologies(rods,particles,and cubes) were prepared and applied to the direct dehydrogenation of ethylbenzene.Multi-technology characterizations,including X-ray photoelectro n spectroscopy(XPS),H2-tempe rature programmed reduction(H2-TPR),and Raman spectroscopy,prove that the oxygen vacancies are the active sites for ethylbenzene dehydrogenation,which can be regulated by engineering CeO2 morphology and enhanced via...  相似文献   

6.
CeN3O9·6H2O(0.5,1.0,1.5,and 2.0 g/L) was added into an 8.0% NaCl electrolyte solution to investigate this electrolyte for use in a Mg-air battery.The effects of the amount of CeN3O9-6H2O on the corrosion resistance of an AZ31 Mg alloy anode and battery performance were investigated using microstructure,electrochemical(dynamic potential polarization method and electrochemical impedance spectroscopy),and battery measurements.The re ...  相似文献   

7.
A series of Sm-Mn mixed oxide catalysts were prepared via precipitation using various precipitants,namely Na2CO3(NH4)2CO3,and NH3·H2O,and evaluated for the selective catalytic reduction(SCR) of NOx with NH3 at low temperatures.Various characterisation techniques were used to determine the physicochemical properties of the catalysts,and it is found that their catalytic performance is greatly influen...  相似文献   

8.
Cerium-promoted silica supported copper chromite catalyst was synthesized from acid hydrolysis of sodium silicate by sol-gel method.The catalyst was characterized by Brunauer-Emmett-Teller(BET)method,field-emission scanning electron microscopy(FESEM),X-ray diffraction(XRD),H2-temperature programmed reduction(H2-TPR),NH3-temperature programmed desorption(NH3-TPD)and pyridine adsorbed Fourier transform infrared spectroscopy(Py-FTIR).Among cerium doped catalysts,5 wt%of Ce promoted copper chromite supported by 40 wt%of silica(SiCuCr40-Ce5)shows the largest BET surface area.XRD analysis of the reduced form of the catalyst shows both CeO2/Ce2O3 redox system and CuO/Cu2O/Cu redox system.Py-FTIR shows the maximum number of Lewis acid sites for SiCuCr40-Ce5 than others.The highest acetol selectivity with analytical reagent(AR)grade glycerol conversion is observed for SiCuCr40-Ce5 at 200℃for 3 h in a batch reactor at atmospheric pressure.Cerium promotion lowers the reaction te mperature with enhanced glycerol conve rsion and increased acetol selectivity.Though the above catalyst shows higher conversion for laboratory reagent(LR)grade glycerol but it reduces acetol selectivity.The addition of glucose into the LR grade glycerol further reduces glycerol conversion and decreases the acetol selectivity to zero.This may be due to the presence of iron as impurity in LR grade glycerol.XRD analysis of spent catalyst shows the absence of redox catalytic system and the pore volume reduces identified by BET analysis.Raman analysis of the spent catalyst shows graphite-like carbon deposition in the spent catalvst.  相似文献   

9.
The MnXOx catalysts(i.e.,MnSmOx,MnNdOx,MnCeOx) were prepared by reverse co-precipitation method and used for NH3-SCR reaction.It is found that MnCeOx catalyst presents the best low tempe rature catalytic activity(higher than 90% NOx conversion in the te mperature range from 125 to 225℃)and excellent H2O+SO2 resistance.In order to explore the reason for this result,the characterization of X-ray diff...  相似文献   

10.
Due to strong synergistic effect of the elements,a series of XEuMnOx ternary oxides(X=Ce,Ni,Co,Sb,Sn,Mo) were synthesized by one-pot co-precipitation method,and composite components were identified and optimized to maintain high activity and superior SO2 and H2O endurance in selective catalytic reduction of NOx with NH3(NH3-SCR).NOx conversion of CeEuMnOx ternary oxide catalysts attains more than 90% at 100-2...  相似文献   

11.
In this work, V/Ce–Ti catalysts were modified with different kinds of transition metals (Cu, Fe, Co, Mn) by sol–gel and impregnation methods. The NH3 oxidation performance of them was tested to select the most active catalyst in NH3-selective catalytic oxidation (NH3–SCO). The effect of NO, SO2 and H2O was also investigated. The experimental results indicate that 1% Cu–V/Ce–Ti catalyst exhibits the most significant ability to remove slip ammonia discharged from coal-fired plants and its NH3 conversion efficiency reaches 90% at 300 °C. In addition, 97% NOx can be removed when NO is introduced in the gas. Cu–V/Ce–Ti catalyst also obtains good resistance to H2O and SO2. Based on the characterization experiment, the introduced Cu and V are highly dispersed on Ce–Ti catalyst and they can increase the redox properties and the number of acidic sites. Besides, the redox cycles among Cu, V and Ce species on Cu–V/Ce–Ti catalyst surface are conducive to generating more active oxygen and promoting the oxidation capacity of the catalyst.  相似文献   

12.
The CeO2, Ce–Nb–Ox and Nb2O5 catalysts were synthesized by citric acid method and the promotion effect of Nb on ceria for selective catalytic reduction (SCR) of NO with NH3 was investigated. The catalytic activity measurements indicate that the mixed oxide Ce–Nb–Ox presents a higher SCR activity than the single oxide CeO2 or Nb2O5 catalyst. In addition, the Ce–Nb–Ox catalyst shows high resistance towards H2O and SO2 at 280 °C. The Raman, X-ray photoelectron spectra and temperature programmed reduction with H2 results indicate that the incorporation of Nb provides abundant oxygen vacancies for capturing more surface adsorbed oxygen, which provides a superior redox capability and accelerates the renewal of active sites. Furthermore, the Fourier transform infrared spectra and temperature programmed desorption of NH3 results suggest that niobium pentoxide shows high surface acidity, which is partly retained in the Ce–Nb–Ox catalyst possessing a high content of Lewis and Brønsted acid sites. Therefore, the incorporation of Nb improves both the redox and acidic capacities of Ce–Nb–Ox catalyst for the SCR reaction. Here, the redox behavior is primarily taken on Ce and the acidity is well improved by Nb, so the synergistic effect should exist between Ce and Nb. In terms of the reaction mechanism, in situ DRIFT experiments suggest that both NH3 on Lewis acid sites and NH4+ on Brønsted acid sites can react with NO species, and adsorbed NO and NO2 species can both be reduced by NH3. In the SCR process, O2 primarily acts as the accelerant to improve the redox and acid cycles and plays an important role. This work proves that the combination of redox and acidic properties of different constituents can be feasible for catalyst design to obtain a superior SCR performance.  相似文献   

13.
In the work, supported catalysts of FeOx and MnOx co-supported on aluminum-modified CeO2 was synthesized for low-temperature NH3-selective catalytic reduction (NH3-SCR) of NO. Impressively, the SCR activity of the obtained catalyst is markedly influenced by the adding amount of Al and the appropriate Ce/Al molar ratio is 1/2. The activity tests demonstrate that Fe–Mn/Ce1Al2 catalyst shows over 90% NO conversion at 75–250 °C and exhibits better SO2 resistance compared to Fe–Mn/CeO2. Fe–Mn/Ce1Al2 shows the expected physicochemical characters of the ideal catalyst including the larger surface and increased active reaction active sites by controlling the amount of Al doping. Also, the better catalytic activity is well correlated with the present advantaged surface adsorption oxygen species, Mn4+ species, Ce3+ species and the enhanced reducibility of Fe–Mn/Ce1Al2, which is superior to the Fe–Mn/CeO2 catalyst. More importantly, we further demonstrate that the amount and strength of surface acid sites are improved by Al-doping and more active intermediates (monodentate nitrate) is generated during NH3-SCR reaction. This work provides certain insight into the rational creation of simple and practical denitration catalyst environmental purification.  相似文献   

14.
Hierarchical ZSM-5(HZ) molecular sieves based on fly ash were synthesized using a method combining water heat treatment with step-by-step calcination.The coupling catalysts between La_(1-x)Ce_xMn_(0.8)-Ni_(0.2)O_3(x ≤ 0.5) perovskites and HZ were prepared through the impregnation method,which were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),high-resolution transmission electron microscopy(HRTEM),N_2 adsorption,X-ray photoelectron spectroscopy(XPS),NH_3-temperature programmed desoprtion(NH_3-TPD),H_2-temperature programmed reduction(H_2-TPR) and O_2-TPD techniques and investigated regarding pentanal oxidation at 120-390℃ to explore the effects of Ce doping on the catalytic activity and the active oxygen species of the coupling catalysts,meanwhile,the reaction mechanism and pathway of pentanal oxidation were also studied.The results reveal that Ce substitution at La sites can change the electronic interactions between all the elements and promote the electronic transfer among La,Ce,Ni,Mn and HZ,influencing directly the physicochemical characteristics of the catalysts.Moreover,the amount and transfer ability of surface adsorbed oxygen(O_2~-and O~-)regarded as the reactive oxygen species and the low temperature reducibility are the main influence factors in pentanal oxidation.Additionally,La_(0.8)Ce_(0.2)Mn_(0.8)Ni_(0.2)O_3/HZ exhibits the best catalytic activity and deep oxidation capacity as well as a better water resistance due to its larger amount of surface adsorbed oxygen species and higher low temperature reducibility.What's more,appropriate Ce substitution can significantly enhance the amount of O_2~-ions,which can distinctly enhance the catalytic activity of the catalyst,and moderate acid strength and appropriate acid amount can also facilitate the improvement of the pentanal oxidation activity.It is found that there is a synergic catalytic effect between surface acidity and redox ability of the catalyst.According to the in situ DRIFTS and GC/MS analyses,pentanal can be oxidized gradually to CO_2 and H_2 O by the surface oxygen species with the form of adsorption in air following the Langmuir-Hinshelwood(L-H) reaction mechanism.Two reaction pathways for the pentanal oxidation process are proposed,and the conversion of the formates to carbonates may be one of the main rate-determining steps.  相似文献   

15.
A series of TiO_2-Al_2 O_3 composites with Al/Ti molar ratios of 0.1,0.2,and 0.4 were synthesized by a coprecipitation method and used as supports to prepare supported MnCeO_x catalysts by an impregnation method.The physico-chemical properties of the samples were extensively characterized by N2 physisorption,X-ray diffraction,Raman spectroscopy,scanning electron micro scopy and energy-dispersive Xray spectroscopy element mapping,X-ray photoelectron spectroscopy,H_2-temperature programmed reduction,ammonia temperature programmed desorption,and in-situ diffuse reflectance infrared Fourier transform spectroscopy.The catalytic activity and resistance to water vapor and SO_2 of the asprepared catalysts for the SCR of NO_x with NH3 were evaluated at 50-250℃ and GHSV of 80000 mL/(g_(cat)·h).The results reveal that MnCeO_x/TiO_2-Al_2 O_3 exhibits higher activity and better SO2 tolerance than MnCeO_x/TiO_2.Combining with the characterization results,the enhanced activity and SO2 tolerance of MnCeO_x/TiO_2-Al_2 O_3 can be mainly attributed to higher relative concentrations of Mn~(4+)and chemisorbed oxygen species,stronger reducibility,and larger adsorption capacity for NH3 and NO,which originate from the larger specific surface area and pore volume,higher dispersion of Mn and Ce species compared with MnCeO_x/TiO_2.Moreover,in situ DRIFTS was used to investigate the reaction mechanism,and the results indicate that the NH3-SCR reaction over MnCeO_x/TiO_2 and MnCeO_x/TiO_2-Al_2 O_3 takes place by both the E-R and L-H mechanisms.  相似文献   

16.
Series of Mn/TiO2 catalysts modified with various contents of Nd for low-temperature SCR were synthesized. It can be found that the appropriate amount of Nd can markedly reduce the take-off temperature of Mn/TiO2 catalyst to 80 °C and NOx conversion is stabilized over 90% in the wide temperature range of 100–260 °C. 0.1Nd–Mn/Ti shows higher N2 selectivity and better SO2 resistance than Mn/Ti catalyst. The results reveal that Nd-doped Mn/TiO2 catalyst exhibits larger BET surface area and better dispersion of active component Mn2O3. XPS results indicate that the optimal 0.1Nd–Mn/Ti sample possesses higher concentration of Mn4+ and larger amount of adsorbed oxygen at the surface compared with the unmodified counterpart. In situ DRIFTS show that the surface acidity is evidently increased after adding Nd, especially, the Lewis acid sites, and the intermediate (-NH2) is more stable. The reaction mechanism over Mn/Ti and 0.1Nd–Mn/Ti catalysts obey the Eley-Rideal (E-R) mechanisms under low temperature reaction conditions. H2-TPR results show that Nd–Mn/TiO2 catalyst exhibits better low-temperature redox properties.  相似文献   

17.
A series of MnMgA10 samples with different amounts of Ce doping were facilely prepared using coprecipitation method and their catalytic soot combustion activity was evaluated by temperature programmed oxidation reaction (TPO). The methods of X-ray diffraction (XRD), Brumauer-Emmett-Teller (BET), H2-TPR, NO-TPO and in situ 1R were used to characterize the physio- chemical properties of these samples. Dopant Ce improved the soot combustion performance of MnMgA10 catalyst due to the en- hanced redox ability. Introduction of NOx led to the further increase of catalytic soot oxidation activity on these samples. Over Ce-containing samples, the catalytic activity was slightly decreased as the amount of dopant Ce increased in 02. Diftbrently, in NO+O2, a certain amount of dopant Ce was much more favorable and excess amount of Ce resulted in a sharp drop of the catalytic soot combustion activity. Both NO: and nitrates were found to have great contributions to the effects of NOx on the soot combustion activity of Ce-doped catalysts. More NO2 was generated as dopant Ce increased. When appropriate amount of Ce was introduced, the as-formed NO2 was stored as bridging bidentate nitrate on Mn-Ce site, which was confirmed to have higher reactivity with soot than nitrite or monodentate nitrate on Mn and/or Ce sites. Overall, Mno.sMg2.sCeo.lAlo.90 was considered as the most potential catalyst for soot combustion.  相似文献   

18.
The effect of manganese and/or ceria loading of V_2 O_5-Mo_O_3/TiO_2 catalysts was investigated for selective catalytic reduction(SCR) of NO_x by NH_3.The manganese and/or ceria loaded V_2 O_5-MoO_3/TiO_2 catalysts we re prepared by the wetness impregnation method.The physicochemical characteristics of the catalysts were thoroughly characterized.The catalytic performance of 1.5 wt% V_2 O_5-3 wt% MoO_3/TiO_2(V1.5 Mo3/Ti) is greatly enhanced by addition of 2.5 wt% MnO_x and 3.0 wt% CeO_2(V1.5 Mo3 Mn2.5 Ce3/Ti) below450℃.Compared with the V1.5 Mo3/Ti catalyst with NO_x conversion of 75% at 275 ℃,V1.5 Mo3 Mn2.5 Ce3/Ti exhibits higher NO_x conversion of 84% with good resistance to SO_2 and H_2 O at a gas hourly space velocity value of 150000 h~(-1).The active manganese,cerium,molybdenum,and vanadium oxide species are highly dispersed on the catalyst surface and some synergistic effects exist among these species.Addition of MnO_x significantly enhances the redox ability of the cerium,vanadium,and molybdenum species.Addition of Ce increases the acidity of the catalyst.More active oxygen species,including surface chemisorbed oxygen,form with addition of Mn and/or Ce.Because of the synergistic effects,appropriate proportions of manganese in different valence states exist in the catalysts.In summary,the good redox ability and the strong acidity contribute to the high NH3-SCR activity and N2 selectivity of the V1.5 Mo3 Mn2.5 Ce3/Ti catalyst in a wide temperature range.And the V1.5 Mo3 Mn2.5 Ce3/Ti catalyst shows good resistance to H_2 O and SO2 in long-time catalytic testing,which can be ascribed to the highly sulfated species adsorbed on the catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号