首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of ethanol for the production of hydrogen has been studied over a series of metal supported CeO2 catalysts. The study is conducted by TPD, steady state reaction, XPS, TEM, and infrared spectroscopy. TPD gave evidence for the role of Rh in dissociating the carbon–carbon bond needed for efficient production of hydrogen molecules. IR of CO adsorption at 90 K revealed that Rh particles are most likely in very small clusters as evidenced by a single OC–Rh IR band at 2020 cm−1. TEM did not show conclusive evidence for the presence of the metal on-top of the CeO2 support, yet the Rh-Pd/CeO2 used catalyst has features that might be attributed to epitaxial growth of the noble metal along the (1 1 1) surface of the CeO2 support. Considerable reconstruction of the CeO2 support is seen for the used catalysts, in addition. Reforming of ethanol to hydrogen using (3 moles of water per mole of ethanol) was very efficient particularly above 650 K where hydrogen selectivity reaches 60 vol.%. At these temperatures hydrogen production from reforming of methane takes place.  相似文献   

2.
The effect of the support nature and metal dispersion on the performance of Pt catalysts during steam reforming of ethanol was studied. H2 and CO production was facilitated over Pt/CeO2 and Pt/CeZrO2, whereas the acetaldehyde and ethene formation was favored on Pt/ZrO2. According to the reaction mechanism, determined by temperature-programmed desorption (TPD) and Diffuse Reflectance Infrared Spectroscopy (DRIFTS) analysis, some reaction pathways are favored depending on the support nature, which can explain the differences observed on the resulting product distribution.  相似文献   

3.
The interactions between Pd/TiO2 catalyst and the reactants and potential reaction intermediates present during aqueous nitrate reduction, including NO3, NO2 and NO in the presence of H2 and H2O were studied by infrared spectroscopy. Adsorbed forms of NO, nitrite and nitrate could all be detected in the presence of water. In the presence of water/H2, nitrate was the most stable surface species followed by nitrite and then highly reactive NO, suggesting that the reduction of nitrate to nitrite is the rate-limiting step. High concentrations of adsorbed nitrite appear to be linked to the detection of gaseous N2O while the formation of ammonia is related to reactions on the Pd surface and the extent of formation is linked to high levels of adsorbed NO in addition to the surface hydrogen availability and the presence of water.  相似文献   

4.
The effect of temperature on the transformations of methylcyclobutane over silica-supported Rh, Ni, Pt and Pd catalysts was studied in a wide temperature range (323–723 K) in a pulse system. The transformations taking place were cracking (hydrogenolysis), hydrogenative ring opening and ring enlargement. The reaction directions were found to depend strongly on the nature of the metal. Over Pt and Pd, hydrogenative ring opening was the main reaction at all temperatures studied. In contrast, Rh and Ni promoted hydrogenolysis at high temperature, and this reaction occurred exclusively above 573 K. The selectivity data on the ring-opening reaction were different over Pt and Pd from those over Rh and Ni. The ring-opening selectivity (ratio of isopentane to both ring-opened products) was close to statistical over Pt and Pd, while sterically less hindered bond scission was the main direction of the ring opening over Rh and Ni.  相似文献   

5.
The effect of the support nature on the performance of Pd catalysts during partial oxidation of ethanol was studied. H2, CO2 and acetaldehyde formation was favored on Pd/CeO2, whereas CO production was facilitated over Pd/Y2O3 catalyst. According to the reaction mechanism, determined by DRIFTS analyses, some reaction pathways are favored depending on the support nature, which can explain the differences observed on products distribution. On Pd/Y2O3 catalyst, the production of acetate species was promoted, which explain the higher CO formation, since acetate species can be decomposed to CH4 and CO at high temperatures. On Pd/CeO2 catalyst, the acetaldehyde preferentially desorbs and/or decomposes to H2, CH4 and CO. The CO formed is further oxidized to CO2, which seems to be promoted on Pd/CeO2 catalyst.  相似文献   

6.
The catalytic activity of the Pt(110) surface for the reaction of NO + H2 was much less than that of the Pt(100) surface. However, the catalytic activity of the Rh deposited Pt(1l0) surface was almost equal to that of the Rh deposited Pt(100) surface. That is, the catalytic reaction of NO + H2 on Pt(110) and Pt(100) surfaces is highly structure sensitive, but it changes to structure insensitive by the deposition of Rh atoms. These results are rationalized by formation of an active overlayer on the Pt(110) and Pt(100) surfaces, which is very analogous to the Rh-O/Pt-layer formed on Rh/Pt(100), Pt/Rh(100) and Pt-Rh(100) alloy surfaces during catalysis. The formation of the common overlayer of Rh-O/Pt-layer during catalysis is responsible for the structure insensitive catalysis of Rh deposited Pt-based catalysts, which is an important role of Rh in a three way catalyst.  相似文献   

7.
The reactions of ethylene glycol and ethanol have been studied on Fe/Pt(1 1 1) and Ti/Pt(1 1 1) bimetallic surfaces utilizing temperature programmed desorption (TPD). These results are compared to our previous studies on Ni/Pt(1 1 1) to illustrate the trend in the reforming activity on 3d-Pt bimetallic surfaces. The oxygenates decomposed on these surfaces to produce mainly H2 and CO. The bimetallic surfaces were prepared by thermal evaporation of Fe or Ti onto Pt(1 1 1), using Auger electron spectroscopy (AES) to monitor surface compositions. Surfaces prepared by deposition of a monolayer of Fe or Ti on Pt(1 1 1), designated Fe–Pt–Pt(1 1 1) or Ti–Pt–Pt(1 1 1), displayed higher reforming activity for both ethylene glycol and ethanol than the corresponding subsurface monolayer Pt–Fe–Pt(1 1 1) and Pt–Ti–Pt(1 1 1) structures or clean Pt(1 1 1). The reforming yield increased as the surface d-band center, calculated from density functional theory (DFT), shifted closer to the Fermi level. The reforming selectivity of oxygenates, especially ethanol, began to decrease as the d-band center shifted closer to the Fermi level. Combining results in the current work with previous studies on Ni/Pt(1 1 1), a general criterion can be formulated for selecting 3d-Pt bimetallic surfaces with desirable reforming activity and selectivity.  相似文献   

8.
The enantioselective hydrogenation of N-acetyl dehydrophenylalanine methyl ester (NADPME) to N-acetyl phenylalanine methyl ester is investigated using cinchonine-modified Pd/TiO2 catalysts. The catalysts were prepared using deposition–reduction and wet impregnation methods and were evaluated for reaction using methanol as solvent with various cinchonine/NADPME molar ratios. Enantioselectivity was sensitive to this ratio and comparison with Pd/γ-Al2O3 showed that the Pd/TiO2 gave marginally higher enantioselectivity when tested under comparable conditions. The effect of Pd loading and dispersion was investigated and the maximum enantiomeric excess observed was dependent on the dispersion; the role of the Pd particle size is discussed in the context of cinchonine adsorption. The reactions were carried out in solvents (methanol and dimethyl formamide) and mixed solvents (methanol–water and dimethyl formamide–water); the enantiomeric excess was significantly enhanced using dimethyl formamide. The addition of water does not have a significant effect for the Pd/TiO2 catalysts. In this paper we report the highest enantiomeric excess for the hydrogenation of a prochiral ester using an immobilised catalyst.  相似文献   

9.
Hydrogen production from ethanol by autothermal reforming over an Rh/CeO2 catalyst was investigated with a stoichiometric feed composition. Ethanol as well as the reaction intermediates like acetaldehyde and acetone was entirely converted to hydrogen and C1 products at 673 K, and methane steam reforming and reverse water gas shift were the major reactions above 823 K. The Rh/CeO2 catalyst exhibited stable activity and selectivity during 70 h on-stream operation at 823–923 K without obvious deactivation evidenced by the constant effluent gas composition. Structural analysis of the used catalyst revealed that CeO2 prevented effectively the highly dispersed Rh particles with sizes of 1–3 nm from sintering and thus maintained sufficient Rh–CeO2 interfacial areas, which facilitated coke gasification through the high oxygen storage-release capacity.  相似文献   

10.
李静  张启俭  齐平  韩丽  邵超 《工业催化》2017,25(6):19-23
二甲醚是一种理想的氢载体,可用于解决氢的储存和运输。以Pt/TiO_2为部分氧化催化剂,结合Ni/Al_2O_3重整催化剂,考察钛前驱体和焙烧温度对二甲醚部分氧化重整制氢反应的影响。结果表明,以Ti(C4H9O)4为原料制备的TiO_2为金红石相,Ti(SO4)2或Ti O(OH)2为原料制备的TiO_2为锐钛矿相;以Ti(C4H9O)4为原料制备的Pt/TiO_2-E催化剂催化性能略好,转化率接近100%,H2收率约90%,表明金红石相TiO_2负载的Pt催化剂略佳;以Ti(SO4)2为原料制备的Pt/TiO_2-S催化剂500℃焙烧可获得金红石相TiO_2。与Pt/Al_2O_3催化剂相比,Pt/TiO_2催化剂具有更好的催化性能,H2收率超过90%,而Pt/Al_2O_3催化剂H2收率约80%。  相似文献   

11.
A. Yee  S. J. Morrison  H. Idriss   《Catalysis Today》2000,63(2-4):327-335
The reactions of ethanol over Rh/CeO2 have been investigated using the techniques of temperature programmed desorption (TPD) and FT-IR spectroscopy, in addition to steady state catalytic tests. A comparison with previous studies of ethanol adsorption over Pd/CeO2 [J. Catal. 186 (1999) 279] and Pt/CeO2 [J. Catal. 191 (2000) 30] catalysts is presented. The apparent activation energy for the reaction was 49, 40, and 43 kJ mol−1 for Rh/CeO2, Pd/CeO2 and Pt/CeO2, respectively, while the turnover number (TON) at 400 K was 5.9, 8.6 and 2.6, respectively. Surface compositions of catalysts were characterised by XPS. A decrease of the atomic O(1s)/Ce(3d) ratio of the CeO2 support indicates its partial reduction upon addition of the noble metal. The extent of reduction per metal atom was in the following order: Pt>Pd>Rh. FT-IR and TPD studies have shown that dehydrogenation of ethanol to acetaldehyde occurred over Pd/CeO2, Pt/CeO2 and Rh/CeO2. Moreover, Rh/CeO2 readily dissociated the C–C bond of ethanol at room temperature to form adsorbed CO (IR bands at 1904–2091 cm−1). This was corroborated by the low desorption temperature of CH4 over Rh/CeO2 (450 K) when compared to that of Pd/CeO2 (550 K) or Pt/CeO2 (585 K).  相似文献   

12.
R. Mariscal  S. Rojas  A. G  mez-Cort  s  G. Dí  az  R. P  rez  J. L. G. Fierro 《Catalysis Today》2002,75(1-4):385-391
ZrO2–TiO2 mixed oxides, prepared using the sol–gel method, were used as supports for platinum catalysts. The effects of catalyst pre-reduction and surface acidity on the performance of Pt/ZT catalysts for the reduction of NO with CH4 were studied. The diffuse reflectance infrared Fourier transformed (DRIFT) spectra of CO adsorbed on the Pt/ZT catalysts, and also on the Pt/T and Pt/Z references, pre-reduced at 773 K in hydrogen, revealed that an SMSI state is developed in the Ti-rich oxide-supported platinum catalysts. However, no shift in the binding energy of Pt 4f7/2 level for Pt/T and Pt deposited on Ti-rich support counterparts pre-reduced at 773 K was found by photoelectron spectroscopy. The DRIFT spectra of the catalysts under the NO+O2 co-adsorption revealed the appearance of nitrite/nitrate species on the surface of the Zr-containing catalysts, which displayed acidic properties, but were almost absent in the Pt/T catalyst. The intensity of these bands reached a maximum for the Pt/ZT(1:1) catalyst, which in turn exhibited a larger specific area. In the absence of oxygen in the feed stream, the NO+CH4 reaction showed DRIFT spectra assigned to surface isocyano species. Since the intensity of this band is higher for the Pt/ZT (9:1) catalyst, it seems that such species are developed at the Pt–support interface.  相似文献   

13.
The partial oxidation of ethanol was investigated over Ru and Pd catalysts supported onto yttria over a wide range of temperatures (473–1073 K). The product distributions obtained over these catalytic systems were correlated with diffuse reflectance infrared spectroscopy analyses (DRIFTS). Results showed that reaction route depended strongly on the type of metal. The decomposition of ethoxy species to CH4 and CO or oxidation to CO2 was promoted by Pd, and the acetaldehyde desorption was predominant over Ru in the low temperature region. Furthermore, the acetate and carbonate formation prevailed over Pd, which explained the lower acetaldehyde selectivity. The presence of CH4 and CO2 at high temperature is assigned to the decomposition of acetate species via carbonates over Pd-based catalysts. Ru was more suitable system for H2 production than Pd by achieving a selectivity of about 59%.  相似文献   

14.
Methane combustion over Pd/Al2O3 catalysts with and without added Pt and CeO2 in both oxygen-rich and methane-rich mixtures at temperatures in the range 250–520°C has been investigated using a temperature-programmed reaction procedure with on-line gas analysis (FTIR). During the temperature loop under oxygen-rich conditions, there was an appreciable hysteresis in the activity of unmodified Pd/Al2O3, which was greatly enhanced over Pd–Pt/Al2O3. Over both catalysts the hysteresis was reversed under slightly methane-rich atmospheres, and as temperature was reduced, a sudden collapse or fluctuations in activity were shown respectively over Pd–Pt/Al2O3 and Pd/Al2O3. Such non-steady behaviour was almost eliminated over Pd/Al2O3–CeO2. Under a very narrow range of conditions and over a Pd/Al2O3 packed bed, oscillation of methane combustion was observed.  相似文献   

15.
Monolithic catalysts based on Rh/TiO2–sepiolite were developed and tested in the decomposition of N2O traces. Several effects such as the presence of NO, O2 and NO + O2 in the gas mixture, the catalysts pre-treatment and the metal loading were evaluated. The system was extremely sensitive to the amount of rhodium, passing through a maximum in the catalytic activity at a Rh content of 0.2 wt.%. It has been demonstrated that both NO and O2 compete for the same adsorption sites as N2O; however, this effect was not as severe as for other previously reported Rh systems. For NO + O2 gas mixtures the inhibition effect was stronger than when only NO or O2 was present. Analysis of the pre-reduced sample by XPS showed Rh mainly in the metal state, even after treatment with N2O + O2 mixtures, suggesting that the oxygen consumption observed in the Temperature Programmed Reaction experiments was related to the oxygen uptake by vacancies in the support. The presence of sepiolite in the support preparation and its role as a matrix over which TiO2 particles were distributed, seems to play an important effect in the migration process of oxygen species through the support vacancies. The Rh/TiO2 monolithic system is an attractive alternative for the elimination of N2O traces from stationary sources due to the combination of high catalytic activity with a low pressure drop and optimum textural/mechanical properties.  相似文献   

16.
以V_2O_5为活性组分,通过对催化剂活性组分、载体结构和助剂等因素的研究,制备La-V/TiO_2-SiO_2催化剂,在n(甲醇)∶n(乙醇)=4∶1、空速1.5 h-1、氮气流量120 m L·min~(-1)、反应温度360℃和常压条件下,乙醇转化率84%,异丁醛选择性67%。  相似文献   

17.
The theoretical and experimental feasibility of direct conversion of CH4 and CO2 to acetic acid by an isothermal step-wise route over Pd/SiO2 and Rh/SiO2 catalysts was investigated. The methyl radical formation from CH4 dissociation and CO2 inserting into the intermediate are regarded as two limiting steps. Preliminary experimental results have shown that the following step-wise route can circumvent the thermodynamic limitation of this direct synthesis at low temperatures. Pd catalysts are more active than Rh catalysts at 170 °C and 200 °C, while formic acid is only produced on Pd catalysts. The optimum contact time of CH4 and CO2 with catalysts is 1 min under the experimental conditions. And there is no apparent deactivation resulting from carbon deposition for catalysts during the successive reaction cycles.  相似文献   

18.
Pd(5) impregnated metal/silica-pillared H-keyaites (M-SPK, M = Ti, Zr) catalysts were prepared for the partial oxidation of methane (POM) to hydrogen. The catalysts were characterized by BET, TEM, SAXS and XPS. In addition, the catalytic yield of the POM to hydrogen over Pd(5) impregnated on M-SPK and Pd(5)/Al2O3, commercial catalyst were investigated in a fixed bed flow reactor under (Ed atmosphere. BET-specific surface areas, average pore sizes and nitrogen adsorption/desorption isotherms were 284.3–396.2 m2/g, 3.3–3.8 nm and type B on type IV isotherms for Pd(5)/M-SPK(M = Ti, Zr), and 90.5 m2/g, 8.3 nm and type E on type IV isotherm for Pd(5)/Al2O3, respectively. TEM images of SPK and Pd(5)/SPK showed the formation of mesoporous layer compounds, as well as the homogenous dispersion of Pd particles on the surface. SAXS peaks at 0.13 Å for fresh Pd(5)/SPK were maintained without being broken, even after about 53 h in stream at 973 K. XPS showed the existence of two oxidation states for Pd (Pd0 and Pd2+) on the surface of the catalyst, depending on the carrier, whereas the presence of Ti and Zr in SPK induced a change in the oxidation state (O2−, O) of the catalyst. The yield values of the POM to hydrogen over Pd(5)/M-SPK(M = Ti, Zr) were 64.9% and 55.8%, respectively, at 973K, CH4/O2 = 2, GHSV = 8.4 × 104 ml/gcat h, and these values were kept constant even after 70 h in stream. These results confirm that Ti and Zr in SPK frame induced oxidation states of Pd, and that the yield of Pd(5)/M-SPK positively regulates the POM to hydrogen.  相似文献   

19.
CO adsorption over Pd4 and Pt4 cluster supported by c-ZrO2(1 1 1) and CeO2(1 1 1) catalyst systems was investigated using periodic density functional method in order to clarify the support effect on CO activation. We found that the support increases the CO activation for bridge and three-fold sites but decreases for the atop site. Moreover, it was found that the support changes the site preference for the CO adsorption. Bridge site on both the Pt4/c-ZrO2 and Pt4/CeO2 show larger CO adsorption energies than those on the other sites while the atop site is energetically preferable on isolated Pt4 cluster. c-ZrO2 supported Pd shows the largest CO activation with large charge transfer from the catalyst to the CO molecule. This reveals that ZrO2 supported Pd can be a good catalyst for CO activation because of its higher probability to the three-fold site CO adsorption. We also found that positively charged M4 clusters on the support keep their strong electron-donating properties and have enough charge density to contribute to the activation of an adsorbed CO molecule by a charge transfer.  相似文献   

20.
We have investigated the catalytic behavior of Pt encapsulated TiO2 nanotubes for the water gas shift reaction as well as the hydrogenation of CO. Pt–TiO2 nanotube catalysts were prepared by employing fine fiber shaped crystals of [Pt(NH3)4](HCO3)2 complex as a structure determining template material. The turnover frequencies (TOF) of these nanotube catalysts were more than one order of magnitude larger than conventional impregnation Pt/TiO2 catalysts, and the selectivity for methanol in CO–H2 reaction was extraordinary high compared to the impregnation catalysts. The XPS and XRD analyses of the nanotubes revealed characteristic electronic state of reduced TiO2 (Ti3+ in rutile structure) with zerovalent Pt even after the calcination at 773 K. In WGS reaction, electron rich Ti3+ on the nanotube wall may play an important role to activate water molecules for the oxidation of CO. In CO–H2 reaction, similar promotion effect of Ti3+ species may be operating for selective methanol formation by supplying active OH(a).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号