首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Aniracetam, a drug known to elicit cognition enhancing properties in both animals and humans, was found to counteract the neurotoxicity induced by excitatory amino acids in primary cultures of cerebellar neurons. We report here that aniracetam prevents the neurotoxic effect induced by N-methyl-D-aspartate (NMDA) in rat hippocampal slices. Time-course experiments showed that the aniracetam-induced neuroprotection does not require preincubation of the slices with the drug. Maximal effective concentration of aniracetam was 10 microM. Since the NMDA-mediated cell death in hippocampal slices is considered a valuable experimental model of ischemia, these results suggest a possible novel therapeutic application for aniracetam.  相似文献   

2.
[14C]Glucose and [14C]acetate have been used to label amino acid pools believed to be localised in neurones and glia, respectively, in small slices of rat spinal cord. The effects of depolarising agents on the efflux of amino acids from these pools were compared and contrasted with their effect on the efflux of exogenous [3H]glutamate. Elevated (50 mM) potassium in the superfusing medium increased the release of glutamate, aspartate and GABA synthesised from either glucose or acetate and that of exogenous glutamate. These increases were not, however, abolished by tetrodotoxin (2 micron). Protoveratrine A (10(-4) M), on the other hand, elevated the efflux of glutamate, GABA and possibly aspartate when these amino acids were synthesised from glucose, but not when acetate was the labelled precursor. Furthermore, this effect was abolished by 2 micron tetrodotoxin. It is concluded that these techniques point to the existence in slices of spinal cord of neuronal pools of glutamate, GABA and possibly aspartate that may be released as a consequence of neuronal activity, and that these pools probably represent transmitter stores of these amino acids.  相似文献   

3.
Heparin-binding growth-associated molecule (HB-GAM) is a developmentally regulated secretory protein with neurite outgrowth-promoting activity. High-frequency stimulation leading to induction of long-term potentiation (LTP) resulted in increased expression of HB-GAM in rat hippocampal area CA1. When tetanization was given in the presence of antagonists of the N-methyl-D-aspartate (NMDA) receptor and postsynaptic voltage-gated calcium channels, the mRNA level was comparable to control levels. The results indicate that high frequency stimulation inducing LTP results in calcium-dependent enhancement in HB-GAM expression, and imply a role for this extracellular protein in the modulation of synaptic function in the hippocampus.  相似文献   

4.
The effect of a permanent transection on myelin gene expression in a regenerating sciatic nerve and in an adult sciatic nerve was compared to establish the degree of axonal control exerted upon Schwann cells in each population. First, the adult sciatic nerve was crushed, and the distal segment allowed to regenerate. At 12 days post-crush, the sciatic nerve was transected distal to the site of crush to disrupt the Schwann cell-axonal contacts that had reformed. Messenger RNA (mRNA) levels coding for five myelin proteins were assayed in the distal segment of the crush-transected nerve after 9 days and were compared to corresponding levels in the distal segments of sciatic nerves at 21 days post-crush and 21 days post-transection using Northern blot and slot-blot analysis. Levels of mRNAs found in the distal segment of the transected and crush-transected nerve suggested that Schwann cells in the regenerating nerve and in the mature adult nerve are equally responsive to axonal influences. The crush-transected model allowed the genes that were studied to be classified according to their response to Schwann cell-axonal contact. The levels of mRNAs were 1) down-regulated to basal levels (P0 and MBP mRNAs), 2) down-regulated to undetectable levels (myelin-associated glycoprotein mRNAs), 3) upregulated (mRNAs encoding 2'3'-cyclic nucleotide phosphodiesterase and beta-actin), or 4) not stringently controlled by the removal of Schwann cell-axonal contact (proteolipid protein mRNAs). This novel experimental model has thus provided evidence that the expression of some of the important myelin genes during peripheral nerve regeneration is dependent on continuous signals from the ingrowing axons.  相似文献   

5.
Evoked field potentials were recorded in the CA3 region of rat hippocampal slices to detect whether intracellular Ca2+ stores are involved in the epileptiform effects of the two prototypic GABA(A) antagonists, bicuculline methiodide (BMI) and gabazine (SR-95531; GBZ). Field population spikes gradually increased and became repetitive (epileptiform bursting) in the presence of either BMI (5 microM), or GBZ (5 microM). Thapsigargin (2 microM), a depletor of intracellular Ca2+ stores, reduced the epileptiform effect of BMI, but had no significant effect on the GBZ-induced hyperexcitability. These data suggest that Ca2+ release from intracellular stores participates in the epileptiform response of hippocampal CA3 neurons to BMI, but not in the response to GBZ.  相似文献   

6.
1. Topiramate is a structurally novel anticonvulsant which was recently approved for adjunctive therapy in partial and secondarily generalized seizures. The present study was aimed at elucidating the mechanisms underlying the anticonvulsant efficacy of topiramate using intra- and extracellular recording techniques in the in vitro hippocampal slices. 2. When stimuli were delivered every 20 s, topiramate had no measurable effect on both field excitatory postsynaptic potentials (fEPSPs) and population spikes (PSs). However, increasing the stimulation frequency from 0.05-0.2 Hz, topiramate significantly decreased the slope of fEPSP and the amplitude of PS in a concentration-dependent manner. The amplitude of presynaptic fiber volley was also reduced. 3. Topiramate did not affect the magnitude of paired-pulse inhibition and monosynaptically evoked inhibitory postsynaptic potentials (IPSPs). 4. Sustained repetitive firing was elicited by injection of long duration (500 ms) depolarizing current pulses (500-800 pA). Superfusion with topiramate significantly reduced the number of action potentials evoked by a given current pulse. 5. After blockade of GABA receptors by bicuculline, burst firing which consisted of a train of several spikes riding on a large depolarizing wave termed paroxysmal depolarizing shift (PDS) was recorded. Application of topiramate reduced the duration of PDS and later spikes with less effect on the initial action potential. 6. These results suggest that frequency-dependent inhibition of neuronal activity due to blockade of Na+ channels may account largely for the anticonvulsant efficacy of topiramate.  相似文献   

7.
8.
In the CA1 region of rat hippocampal slices, H2O2 (0.294-2.94 mM) caused initial augmentation, and subsequent long-lasting depression, of population spikes and excitatory postsynaptic potentials. The effect of H2O2 may not be mediated by its degradation product, hydroxyl radicals, because an iron chelator deferoxamine did not block the effect. A catalase inhibitor 3-amino-1,2,4-triazole only modestly attenuated the initial augmentation, suggesting that the effect of H2O2 is not attributable to catalase-dependent O2 generation, either. An N-methyl-D-aspartate receptor antagonist DL-2-amino-5-phosphonovaleric acid had no influence on the effect of H2O2, whereas a gamma-aminobutyric acid type A receptor channel blocker picrotoxin attenuated long-lasting depression, indicating that gamma-aminobutyric acid-mediated inhibition is altered during the depression phase. The initial augmentation but not subsequent depression was attenuated by a phospholipase A2/C inhibitor 4-bromophenacyl bromide, suggesting the involvement of lipid signaling molecule(s) in the enhancement of excitatory synaptic transmission. These results suggest that H2O2 regulates hippocampal synaptic transmission via multiple mechanisms.  相似文献   

9.
10.
Excitotoxic mechanisms are believed to be involved in the death of neurons after trauma, epileptic seizures and cerebral ischaemia. We investigated the role of mitochondrial superoxide production in excitotoxic cell death of cultured rat hippocampal neurons. Brief exposure to the selective glutamate agonist N-methyl-D-aspartate (NMDA; 100-300 microM, 10 min) induced significant neuronal death, which was sensitive to cycloheximide (1 microM) and the caspase-1 inhibitor, acetyl-Tyr-Val-Ala-Asp-chloromethylketone (10 microM). Intracellular superoxide production was monitored semiquantitatively on sister cultures from the same platings using the oxidation-sensitive probe, hydroethidine. Brief exposures to toxic NMDA concentrations induced significant increases in superoxide production which correlated with the degree of neuronal injury. However, subtoxic NMDA exposures also produced moderate, yet statistically significant increases in superoxide production. Both NMDA-induced superoxide production and neurotoxicity were reduced by inhibition of mitochondrial electron transport using either sodium cyanide (1 mM), or a combination of rotenone (2 microM) and oligomycin (2 microM). The mitochondrial uncoupler carbonyl cyanide p-trifluoromethoxy-phenylhydrazone (FCCP, 1 microM) mimicked the effect of NMDA on mitochondrial superoxide production. Both NMDA-induced superoxide production and neurotoxicity were potentiated by FCCP (1 microM). Exposure to FCCP alone (1-10 microM, 10 min), however, failed to produce any toxicity. Our data suggest that mitochondrial superoxide production per se is not sufficient to trigger the degeneration of cultured hippocampal neurons, but that manipulation of mitochondrial activity alters NMDA-induced superoxide production and neurotoxicity.  相似文献   

11.
Alpha, omega-adenine dinucleotides (Ap(n)A) consist of two adenosine molecules linked at the 5' position by phosphate groups, the number of which is denoted by n and can range from 2 to 6. The aim of this study was to investigate the effect of Ap4A and Ap5A on the rate of epileptiform activity. Hippocampal slices (450 microm), when perfused with a medium containing no added magnesium and 4-aminopyridine (50 microM), generate epileptiform activity of an interictal nature. Ap4A and Ap5A at 1 microM depressed the discharge rate to a significant extent. At this concentration adenosine (1 microM) did not produce any effect. However at 10 microM adenosine, Ap4A and Ap5A all decreased the burst frequency. Adenosine deaminase (0.2 U/ml) totally annulled the inhibition of epileptiform activity produced by 10 microM adenosine or 1 microM Ap4A and Ap5A. Adenosine deaminase did not significantly change the maximum depression of activity produced by 10 microM Ap4A and Ap5A. 8-cyclopentyl-1,3-dimethylxanthine, an A1, receptor antagonist, increased the basal rate of epileptiform activity and prevented the depression of burst discharges by Ap4A. 5'-adenylic acid deaminase converts AMP into IMP which is inactive. 5'-adenylic acid deaminase did not prevent the inhibitory effects of Ap4A. The results suggests that in the CA3 region of the hippocampus, Ap4A and Ap5A act partly by stimulating xanthine-sensitive receptors directly and partly through the formation of the metabolite, adenosine.  相似文献   

12.
Organotypic cultured slices of the rat hippocampus undergo synaptic reorganization. Besides the establishment of reciprocal connections between area CA1 and the dentate gyrus (DG), collateral excitatory connections between granule cells are formed which are similar to those appearing in several epilepsy models and in the DG from patients with temporal lobe epilepsy. We studied the characteristics of epileptiform activity induced by low Mg2+ perfusion in cultured hippocampal slices using extra- and intracellular recordings. With low Mg2+ perfusion synchronous seizure like events (SLEs) were readily observed in the DG and areas CA3 and CA1. Also, the isolated DG was able to display seizure like activity. Intracellular recordings revealed long lasting depolarization shifts in granule cells of the DG and pyramidal cells of areas CA3 and CA1. The SLEs, lasting 2-3 s, could be recorded for at least 3 h in areas CA1 and CA3. However, approximately an hour after perfusion with low Mg2+, the epileptiform activity disappeared in the DG and responses to single pulse hilar stimulation progressively deteriorated. These responses returned to control values 1 week after reincubating the cultures. Interestingly, no deterioration of stimulus induced responses was observed in the isolated DG after exposure to low Mg2+.  相似文献   

13.
The authors describe their case of the extremely rare multiple metastases of cutan melanoma malignum in the upper urinary tracts as it was treated with operations. In the case of their 17-year old patient first percutan resection of the right side of the renal pelvis-wall was done then one and half months later ureteronephrectomia was carried out on the right side because of metastases in the renal pelvis and the ureter. The primary tumour had been removed from the hairy area of the head 9 months earlier in a dermatological department. The authors have met only 14 similar cases in the international literature. In Hungary no review of any similar case has been found.  相似文献   

14.
A high-performance liquid chromatography assay for hydroxyurea in human serum was developed based on a commercial colorimetric assay kit for urea (Sigma Diagnostics). Serum (0.5 ml), spiked with methylurea as an internal standard, was treated with 70% perchloric acid. Supernatant (0.2 ml) was combined with 0.7 ml of BUN acid reagent and 0.6 ml of BUN color reagent. The resulting colored reactant (100 microl) was analyzed on a 300 x 3.9 mm Bondclone 10 C18 column coupled with a UV-Vis detector, at 449 nm. The mobile phase was 13% acetonitrile in water. Retention times of colored derivatives of hydroxyurea and methylurea were 6.5 and 12.2 min, respectively. The log-log calibration curve was linear from 0.0065 to 1.31 mM. Average accuracy was 99.9+/-4.0% and the intra- and inter-day error of assay did not exceed 11%.  相似文献   

15.
The presynaptic neuromodulation of stimulation-evoked release of [3H]-acetylcholine by endogenous adenosine, via A1-adenosine receptors, was studied in superfused hippocampal slices taken from 4-, 12- and 24-month-old rats. 8-Cyclopentyl-1,3-dimethylxanthine (0.25 microM), a selective A1-receptor antagonist, increased significantly the electrical field stimulation-induced release of [3H]-acetylcholine in slices prepared from 4- and 12-month-old rats, showing a tonic inhibitory action of endogenous adenosine via stimulation of presynaptic A1-adenosine receptors. In contrast, 8-cyclopentyl-1,3-dimethylxanthine had no effect in 24-month-old rats. 2-Chloroadenosine (10 microM), an adenosine receptor agonist decreased the release of [3H]-acetylcholine in slices taken from 4- and 12-month-old rats, and no significant change was observed in slices taken from 24-month-old rats. In order to show whether the number/or affinity of the A1-receptors was affected in aged rats, [3H]-8-cyclopentyl-1,3-dimethylxanthine binding was studied in hippocampal membranes prepared from rats of different ages. Whereas the Bmax value was significantly lower in 2-year-old rats than in younger counterparts, the dissociation constant (Kd) was not affected by aging, indicating that the density rather than the affinity of adenosine receptors was altered. Endogenous adenosine levels present in the extracellular space were also measured in the superfusate by high performance liquid chromatography (HPLC) coupled with ultraviolet detection, and an age-related increase in the adenosine level was found. In summary, our results indicate that during aging the level of adenosine in the extracellular fluid is increased in the hippocampus. There is a downregulation and reduced responsiveness of presynaptic adenosine A1-receptors, and it seems likely that these changes are due to the enhanced adenosine level in the extracellular space.  相似文献   

16.
Hydrogen peroxide (H2O2, 3.3 mM) partially reversed the hypoxic depression of the evoked population spike recorded from CA1 region of rat hippocampal slices. It is known that elevated endogenous adenosine contributes to the hypoxic inhibition of the population spike. Exogenous adenosine (100 microM) inhibited the population spike that had been partially resuscitated by H2O2 during maintained hypoxia. It is concluded that the ability of H2O2 to oppose hypoxic depression does not occur at the level of the adenosine receptor since added adenosine was still effective in inhibiting the evoked potential in the presence of H2O2.  相似文献   

17.
Human N-acetylmuramyl-L-alanine amidase (EC 3.5.1.28) degrades peptidoglycan, a major component of bacterial cell walls with potent pro-inflammatory cytokine-inducing properties. We postulate that degradation of peptidoglycan by N-acetylmuramyl-L-alanine amidase is important for the inactivation of inflammatory peptidoglycan products in human tissues. The inflammatory activities of peptidoglycan digested by lysozyme and/or amidase were investigated using two properties of peptidoglycan: its capacity to induce the release of the inflammatory cytokines IL-1, IL-6 and TNF-alpha in vivo and in vitro and its capacity to induce arthritis in Lewis rats. The results show that after subsequent treatment with both lysozyme and amidase, the peptidoglycan products were unable to induce arthritis in Lewis rats. The production of pro-inflammatory cytokines in mice after intravenous injection of cell wall fragments was lower after in vitro degradation of the cell wall fragments by amidase. These in vivo results were confirmed with whole blood assays in which the production of pro-inflammatory cytokines was measured after stimulation with lysozyme- and amidase-treated peptidoglycan. The results show that human N-acetylmuramyl-L-alanine amidase possesses an enzymatic activity capable of inactivating inflammatory peptidoglycan by lowering its cytokine-inducing properties.  相似文献   

18.
Signal propagation from mossy fibers to CA1 neurons was investigated in rat hippocampal slices by a combination of electrical and optical recordings. The slices were prepared by oblique sectioning of the middle part of the hippocampus to preserve fiber connections. The mossy fibers were stimulated to induce population spikes (PSs) and excitatory postsynaptic potentials in the middle part of the CA1 region. Latencies of maximal PSs in CA1 varied widely among slices; they ranged from 7 to 13.5 ms, with two maxima at 9 and 11.5 ms. The fastest PSs probably are evoked by the Schaffer collaterals that connect the CA3 and CA1 regions in the well-known trisynaptic circuit. However, the slower PSs suggest the existence of additional delayed inputs. To determine the source of the delayed input, slices were stained with a voltage-sensitive dye, RH482, and the optical signals relevant to membrane potential changes were detected by a high-resolution optical imaging system. Optical recording of responses to mossy fiber stimulation indicated two distinct types of signal propagation from CA3 to CA1. In preparations evincing the fast type of propagation, signals spread to CA1 within 7.2 ms after the mossy fiber stimulation. During such propagation, activity flowed directly from CA3 to the stratum radiatum of CA1. Other preparations illustrated slow signal propagation, in which optical signals were generated in CA2 before spreading to CA1. During such slow signal transmission, activity persisted in CA2 and its surrounding area for 3 ms before propagating to the strata radiatum and oriens in CA1. In such cases, CA1 activity was detected within 10.8 ms of mossy fiber stimulation. In some slices, a mixture of the fast and slow propagation patterns was observed, indicating that these two transmission modes can coexist. Our data reveal that CA2 neurons can transmit delayed excitatory signals to CA1 neurons. We therefore conclude that consideration of electrical signal propagation through the hippocampus should include flow through the CA2 region in addition to the traditional dentate gyrus-CA3-CA1 trisynaptic circuit.  相似文献   

19.
The effects of the mixed class I and II mGLUR agonist (+) 1S,3R-trans-amino-cyclopentane-1,3-dicarboxylic acid (ACPD) and antagonists (+) alpha-methyl-4-carboxyphenylglycine (MCPG) and L-2-amino-3-phosphonopropionic acid (L-AP3) on the basal neuronal excitability and on the expression of in vitro epileptiform activity produced by the convulsant drugs picrotoxin and penicillin were investigated in rat hippocampal slices. The duration of the CA1 epileptiform bursting produced by 0.05 mM picrotoxin or 1 mM penicillin or 0.075 mM ACPD was significantly (p<0.05) and dose-dependently decreased by 0.3-0.5 mM MCPG or L-AP3, but not by 0.05 mM ACPD. The data demonstrate an involvement of class I and II mGLURs in the basal neuronal excitability and in the expression of in vitro epileptiform activity produced by some convulsants.  相似文献   

20.
1. We hypothesized that burst activity induced in rat hippocampal tissue by a high-K+ medium in vitro would be increased by a previous episode of global ischaemia, severe enough to induce persistent neurological dysfunction. 2. Male Wistar rats that were subjected to 9 min of chest compression, sufficient to reduce blood pressure (BP) to zero, showed evidence of neurological damage attributed to a global ischaemic insult. Hindlimb function was impaired for 24-48 h and a susceptibility to sound-induced seizures was induced in 25 to 35 rats. The seizure susceptibility cleared spontaneously within 2 weeks in 10 of 25 rats. 3. Hippocampal slices from postischaemic rats were prepared, tested for viability and were then exposed to an 8.0 mmol/L K+ artificial cerebrospinal fluid in vitro. Spontaneous epileptiform bursting activity in the high-K+ medium was not increased. Instead, burst size decreased with time after ischaemia. 4. The decrement in bursting activity is attributed to loss of cellular activity or integrity. These changes correlate with functional changes described by others, but not necessarily to histologically verifiable cell death. The time course of these changes was remarkably long, continuing for almost 3 weeks. Thus, a less-than-lethal ischaemia appears to induce neuronal changes, possibly reversible, that continue for at least 20 days after the global ischaemic insult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号