首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent results concerning structural and optical features of the sol-gel silica glasses with semiconductor (copper selenide) and metal (copper) nanoparticles are presented. The preparation procedure was elaborated as the flexible sequence to control chemical composition and properties of the particles in sol-gel-derived silica matrix. Structure and properties of materials were characterized with TEM, XRD and optical spectroscopy. The principal optical features of the glasses with copper nanoparticles are the plasmon resonance band. Copper selenide nanoparticles within the glasses reveal both semiconductor-like absorption band and the near-IR absorption.  相似文献   

2.
The ability to prepare Au–Cu2O core–shell nanocrystals with precise control over particle size and shape has led to the discovery of facet‐dependent optical properties in cuprous oxide crystals. The use of Au cores not only allows the successful formation of Au–Cu2O core–shell nanocrystals with tunable sizes, but also enables the observation of facet‐dependent optical properties in these crystals through the Au localized surface plasmon resonance (LSPR) absorption band. By tuning the Cu2O shell morphology from rhombic dodecahedral to octahedral and cubic structures, and thus the exposed facets, the Au LSPR band position can be widely tuned. Such facet‐dependent optical effects are not observed in bimetallic Au–Ag and Au–Pd core–shell nanocrystals with the same precisely tuned particle sizes and shapes. It is believed that similar facet‐dependent optical properties could be observed in other ionic solids and other metal–metal oxide systems. The unusually large degree of plasmonic band tuning covering from the visible to the near‐infrared region in this type of nanostructure should be quite useful for a range of plasmonic applications.  相似文献   

3.
PMMA/SiO_2-TiO_2杂化纤维的制备与表征   总被引:2,自引:0,他引:2  
以正硅酸乙酯和钛酸四丁酯为前驱体,乙烯基三乙氧基硅烷为偶联剂,采用溶胶凝胶原位聚合法制备了聚甲基丙烯酸甲酯/二氧化硅-二氧化钛(PMMA/SiO2-TiO2)杂化溶胶,陈化后用提拉法制得杂化纤维。研究了溶胶的杂化反应机理;使用红外光谱(IR)、扫描电子显微镜(SEM)、紫外-可见光谱(UV-Vis)、荧光光谱(FL)和热重分析(TGA)分析了杂化纤维的结构与性能。结果表明,PMMA与SiO2-TiO2之间通过化学键连接;纤维直径为150μm,在纤维内部有机无机相间形成均一的连续相;TiO2的引入增加了其抗紫外性;杂化纤维具有荧光性能;其耐热性能优于纯PMMA。  相似文献   

4.
Water soluble fullerenols were synthesized and incorporated in SiO2, SiO2-TiO2, GPTMS-SiO2, GPTMS-ATPS inorganic and organic-inorganic materials by sol-gel processes. The maximum concentrations of C60(OH)n and C70(OH)n in the obtained SiO2 gels were estimated to be about 0.6% and 1.5% in weight, respectively. The characteristics of the UV/visible spectra of fullerenols in H2O and various gels were measured and compared. The thermal stability of fullerenols in gels was investigated with differential thermal analysis (DTA). The results indicate that the absorption features of fullerenols in solid gels are similar to those in H2O and the fullerenols in SiO2 are stable at 400℃. The optical limiting effect of the fullerenols was investigated preliminarily.  相似文献   

5.
采用溶胶.凝胶法制备了负载型复合半导体光催化材料ZnFe2O4-TiO2/SiO2,并通过DTA-TG、XRD、XPS、Raman、TPR及UV-Vis DRS等实验技术对复合材料的晶体结构、表面组成及光响应性能进行了表征和评价.结果表明:ZnFe2O4晶相以高分散状态存在于光催化材料的表面;ZnFe2O4与TiO2复合可使部分Fe^3+进入体相TiO2的晶格中,促进其由锐钛矿向金红石的相转变,同时表面剩余的少量Zn计聚集形成ZnO物相;TiO2的相变由体相开始,随着ZnFe2O4含量的增加逐渐向表面扩展;SiO2的加入使活性组分更加分散,TiO2平均粒径〈10nm;ZnFe2O4的加入明显拓宽了TiO2的吸光域,并增强了对可见光的吸收.  相似文献   

6.
以锆酸丁酯及乙酰丙酮、苯甲酰丙酮为原料,经溶胶-凝胶工艺,制备具有负性光刻胶性质的ZrO2光敏溶胶,在将其与正硅酸乙酯通过水解缩聚反应复合,采用浸渍提拉法在基片上制得折射率在1.463-1.647之间连续可调的SiO2/ZrO2二元光敏凝胶薄膜.其敏感波长在335nm附近.通过FTIR分析,发现凝胶薄膜中含有Si-O-Zr、Zr-O的特征振动峰,证明SiO2与ZrO2两相在分子尺度上形成了微观组分均匀的薄膜.利用掩模板结合紫外曝光及显影工艺在凝胶膜上转移了光栅等表面微结构图形.  相似文献   

7.
(Bi, C and N) codoped TiO2 nanoparticles   总被引:2,自引:0,他引:2  
Bi, C and N codoped TiO2 photocatalysts were prepared by doping TiO2 with BiCl3 and KSCN in a sol-gel process (denoted as (Bi,SCN)-TiO2). The catalyst samples were then characterized by XRD, TEM, diffuse reflectance spectra (DRS), XPS, FT-IR and N2 sorption. Bi, C and N elements were detected both by XPS and elemental analysis, while S element was not found, suggesting that SCN- group may have decomposed during the sol-gel process. The effects of the doping on the properties and photocatalytic activity of the TiO2 were investigated. It was found that the cation and the anion affected the properties of TiO2 differently. The optical absorption onset of TiO2 red shifted in the presence of Bi3+, while long tail occurred in the presence of SCN-. The order of photoreactivity for TiO2 samples was as follow: (Bi,SCN)-TiO2>Bi-TiO2>undoped TiO2>p25 TiO2, whatever under UV or visible light illumination. The high photoreactivity of the doped TiO2 was also discussed.  相似文献   

8.
The nonradiative decay of a localized surface plasmon through absorption of a captured photon and excitation of an energetic electron-hole pair is a potentially very effective way to enhance chemical reactions on metal nanoparticle surfaces, so far limited to Ag (and Au). Here we explore the possibility of efficient and spectrally widely tunable optical absorption engineering based on heterometallic optical nanoantennas. They consist of an optimized antenna element made of Au (or Ag) and a catalytically active second metallic element separated by a thin SiO(2) layer. Specifically, we find that stacked Au-SiO(2)-Pd nanodisk antennas exhibit pronounced local absorption enhancement in the catalytic Pd particle. The effect is caused by efficient power transfer from the Au disk, exhibiting a narrow low-loss resonance and acting as an antenna collecting photons, to the Pd disk due to strong coupling between the two. The Pd element thus acts as receiver that efficiently dissipates energy into electron-hole pairs owing to efficient coupling to intra and interband transitions. In fact, the energy transfer is found to be so effective that the absorption efficiency at a given wavelength can be enhanced up to 6 to 9 times, and the total absorption integrated over a wide spectral range (400-900 nm) up to 2-fold, depending on the antenna dimensions. This finding suggests a novel route toward highly efficient plasmon-enhanced catalysis on widely selectable catalytic metal particle surfaces not limited to the "classic" plasmonic metals Au and Ag.  相似文献   

9.
研究了SiO2介孔组装复合材料的光学性质。对于Ni介孔组装体系,随着组装成分和还原温度的提高,纳米颗粒尺寸增大;由于纳米颗粒的表面效应,光吸收边发生明显的红移。光吸收行为与纳米颗粒和基体之间的相互作用,以及相互之间电子转移有关;纳米金属颗粒介孔组装体系光吸收符合间接带隙半导体光吸收模式。在组装体系中加入稀土元素Ce,还原气氛处理后体系的光吸收增强,随着稀土元素添加量的提高,组装体系的吸收边发生较大红移。  相似文献   

10.
退火CdS/SiO2介孔组装体系光吸收的行为   总被引:2,自引:0,他引:2  
用溶胶-凝胶法获得多孔SiO2载体,浸泡合成法得到不同复合量的CdS/SiO2块材料介孔组装体系。研究了复合量、气氛条件及退火温度对其光吸收特征的影响,发现吸收边随复合量增加往长波方向移动;在氮气和空气中退火时,随退火温度升高前者表现为红移而后者表现为蓝移,这归属于量子尺寸效应。  相似文献   

11.
Thin-film composites comprised of NiO and NiO/Au nanoparticles in a porous SiO(2) matrix have been prepared using the sol-gel technique. When at elevated temperatures (200?°C< T<350?°C) and exposed to carbon monoxide, the films undergo reversible changes in optical transmittance at wavelengths in the visible-near IR region. For NiO composite films heated at 330?°C and exposed to 1% CO in air, there is an increase in transmittance which approaches 2-4% over most of the visible range. For NiO/Au composite films the transmittance increase exhibits a wavelength dependence, with a maximum change which is close to 6% at λ≈630?nm and which is close to zero in the Au plasmon resonance range (λ≈550?nm).  相似文献   

12.
利用溶胶-凝胶法制备了有机-无机杂化光敏性SiO2-TiO2材料,在单晶硅基片上旋转涂膜,经前烘、紫外光固化、淋洗、后烘等步骤,在硅片上得到复制有掩模微图案的薄膜。用紫外-可见光-近红外分光光度计测试了薄膜的光透过吸收性质,用Fourier红外光谱仪测试了不同紫外光辐照时间下薄膜的红外振动吸收光谱,用高倍光学显微镜和扫描电子显微镜(SEM)观察制备得到的薄膜微图案。结果表明:薄膜在紫外可见光区域的光透过率约为90%,紫外光照能促使不同的官能团间发生缩聚反应,80℃前烘温度处理以及15min左右的紫外光辐照能够得到清晰、精确的薄膜微图案。  相似文献   

13.
采用溶胶-凝胶(sol-gel)方法,成功的将高体积百分比的Au纳米颗粒复合到BaTiO3的非晶薄膜中,并对其光学性质进行了研究.用XRD、TEM、椭偏仪、吸收光谱、光克尔效应0KE(Optical Kerr Effect)方法对薄膜进行了表征和测试.从吸收光谱观察到表面等离子体共振SPR(Surface Plasma Resonance)峰随热处理温度升高而红移的现象.光学非线性测试表明薄膜具有高的三阶非线性极化率x(3)和超快的响应时间.  相似文献   

14.
BaTiO3基Au纳米颗粒复合薄膜的制备及其光学性质研究   总被引:1,自引:1,他引:0  
采用溶胶-凝胶(sol-gel)方法,成功的将高体积面分比的Au纳米颗粒复合到BaTiO3的非晶薄膜中,并对其光学性质进行了研究。用XRD、TEM、椭偏仪、吸收光谱、光克尔效应OKE(Optical Kerr Effcet)方法对薄膜进行了表征和测试。从吸收光谱观察到表面等离子体共振SPR(Surface Plasma Resonance)峰随热处理温度升高而红移的现象。光学非线性测试表明薄膜具有高的三阶非线性极化率Χ^(3)和超快的响应时间。  相似文献   

15.
Ag -TiO2 nanocermet thin films, deposited for optical filtering applications by two sputtering techniques, codeposition and multilayer deposition, exhibit surface plasmon absorption in the spectral range 450 -500 nm. The cosputtering technique induces a columnar growth, whereas multilayer deposition produces a more-random distribution of silver inclusions. Both films have large, flat silver grains at the air -cermet interface. An optical double-heterogeneous layer model based on the experimental morphological parameters of the films accounts well for their experimental transmittance, notably for extra absorption near 700 nm, which is attributed to a surface plasmon in the flat silver grains of the surface.  相似文献   

16.
Au-Ag alloy nanoparticles with tunable atomic ratios have been generated in SiO2 film matrix using a new two layer (TL) approach. Two successive overlapping coating layers of similar thickness were deposited on silica glass substrates using Au- and Ag-incorporated inorganic-organic hybrid silica sols, respectively. The Au and Ag concentrations in the individual layers were varied to obtain the desired Au-Ag alloys of different compositions. Four sets of such TL coating assemblies were prepared from the following pair of sols: (i) 4 equivalent mol.% Au-96% SiO2 and 2 equivalent mol.% Ag-98% SiO2, (ii) 3 equivalent mol.% Au-97% SiO2 and 2 equivalent mol.% Ag-98% SiO2, (iii) 3 equivalent mol.% Au-97% SiO2 and 3 equivalent mol.% Ag-97% SiO2, and (iv) 2 equivalent mol.% Au-98% SiO2 and 3 equivalent mol.% Ag-97% SiO2 and subjected to UV (2.75 J/cm2) and heat-treatments (450-550 degrees C) in air and H2-N2 atmospheres for the generation of Au-Ag alloy nanoparticles of approximate compositions Au.66Ag0.33, Au0.6Ag0.4, Au0.5Ag0.5, and Au0.4Ag0.6, respectively. After UV-treatment, individual Au and Ag nanoparticles were formed in the respective layers. The heat-treatment (450-550 degrees C) induces interlayer diffusion of Au and Ag to each other with the generation of Au-Ag alloy nanoparticles, and as a result, Au-Ag alloy surface plasmon resonance (SPR) absorptions were observed in between the Ag- and Au-SPR absorption positions in the visible spectra. The expected alloy compositions are formed through several intermediate alloy nanoparticles, which can also be arrested by controlling the annealing parameters. The alloy formations were monitored by UV-VIS, FTIR, XRD, EDAX, and TEM studies.  相似文献   

17.
Pure TiO(2) and erbium ion-doped TiO(2) (Er(3+)-TiO(2)) catalysts prepared by the sol-gel method were characterized by means of XRD and diffusive reflectance spectra (DRS). The XRD results showed that erbium ion doping could enhance the thermal stability of TiO(2) and inhibit the increase of the crystallite size, and the DRS results showed that the optical absorption edge slightly shifted to red direction owing to erbium ion doping and the Er(3+)-TiO(2) catalysts had three typical absorption peaks located at 490, 523 and 654 nm owing to the transition of 4f electron from (4)I(15/2) to (4)F(7/2), (2)H(11/2) and (4)F(9/2). With a purpose of azo dyes degradation, orange I was used as a model chemical. And the adsorption isotherm, degradation and mineralization of orange I were investigated in aqueous suspension of pure TiO(2) or Er(3+)-TiO(2) catalysts. The results showed that Er(3+)-TiO(2) catalysts had higher adsorption equilibrium constants and better adsorption capacity than pure TiO(2). The adsorption equilibrium constants (K(a)) of Er(3+)-TiO(2) catalysts were about twice of that of pure TiO(2). The maximum adsorption capacity (Q(max)) of 2.0% Er(3+)-TiO(2) catalyst was 13.08x10(-5)mol/g, which was much higher than that of pure TiO(2) with 9.03x10(-5)mol/g. Among Er(3+)-TiO(2) catalysts, 2.0% Er(3+)-TiO(2) catalyst achieved the highest Q(max) and K(a) values. The kinetics of the orange I degradation using different Er(3+)-TiO(2) catalysts were also studied. The results demonstrated that the degradation and mineralization of orange I under both UV radiation and visible light were more efficient with Er(3+)-TiO(2) catalyst than with pure TiO(2), and an optimal dosage of erbium ion at 1.5% achieved the highest degradation rate. The higher photoactivity under visible light might be attributable to the transitions of 4f electrons of Er(3+) and red shifts of the optical absorption edge of TiO(2) by erbium ion doping.  相似文献   

18.
Nanostructured silica based glass-ceramics samples of composition (100 - x)SiO2-xSnO2, with x from 1 to 10, have been synthesized by thermal treatment of precursor sol-gel glasses. The average size of the obtained SnO2 nanocrystals, calculated by using the X-ray diffraction, can be predetermined by using well-controlled concentration of tin precursor. The mean radius ranging from 1.6 to 5.5 nm, is comparable to the exciton Bohr radius, corresponding to wide band-gap semiconductor quantum-dots in an insulator SiO2 glass. A spectroscopy study in terms of optical absorption and photoluminescence spectra has been carried out as a function of SnO2 concentration. Size-dependent red-shifts of excitation and emission bands, with increasing of tin precursor concentration, point to the quantum confinement effect. The nanocrystal sizes have been obtained and compared by using the Brus and Scherrer equations. The band gap increase is in agreement with results, based on the effective mass model. The recombination of conduction band electron with oxygen vacancies is proposed to explain the luminescence red-shift.  相似文献   

19.
采用静电纺丝法结合溶胶凝胶技术,制备了尼龙-6/SiO2-TiO2杂化纳米纤维。采用红外光谱(FT-IR)、X射线衍射(XRD)、UV-vis、热重分析(TG)和扫描电镜(SEM)等对杂化纳米纤维进行分析表征。结果表明,随着SiO2-TiO2溶胶的引入,电纺纤维的结晶度下降,耐热性能提升。尼龙-6电纺纤维的平均直径约为...  相似文献   

20.
Au nanoparticles have distinctive absorption spectra whose peak position or particle plasmon resonance wavelength is highly sensitive to molecule adsorption on their surfaces. Spherical Au nanoparticles are surface-modified by amino-functionalized self-assembly-monolayer and used as optical probes in the fluorescence-label-free spectroscopic detection of sub-nanomole oligonucleotides. Time-resolved studies of the immobilization and hybridization of oligonucleotides on the surface of Au nanoparticles were carried out. By measuring peak shift of absorption spectra of the Au colloidal nanoparticles over time, the samples of 15 nM 20 mer target and mismatched oligonucleotides are distinguished by their different influences on the particle plasmon resonance wavelength. The approach presented in this paper extends the application of Au nanoparticles as the optical probe in oligonucleotide recognitions without prior sample labeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号