首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
在程序升温条件下,用DSC、TG-DTG和IR,研究了标题化合物的热行为和放热第一阶段分解反应的动力学和机理.提出了反应机理.该反应的微分形式的动力学模式函数、表观活化能(Ea)和指前因子(A)分别为1/3(1-α)[-ln(1-α)]-2,166 6 kJ.mol-1和1013.29s-1.标题化合物的热爆炸临界温度为191.16℃.该反应的△S≠、△H≠和△G≠分别为50.8 J·mol-1·K-1、162.9 kJ·mol-1和139.9 kJ·mol-1.  相似文献   

2.
用DSC研究了标题化合物在线性升温条件下的热行为和放热分解反应的动力学参数。结果表明:该反应的微分形式的经验动力学模式函数、表观活化能和指前因子分别为(1-α)-0.506,155.5kJ·mol-1和1013.5s-1,标题化合物的热爆炸临界温度为205.0℃。该反应的ΔS≠,ΔH≠和ΔG≠分别为6.0J·mol-1·K-1,146.5kJ·mol-1和143.7kJ·mol-1。  相似文献   

3.
用DSC研究了标题化合物在线性升温条件下的热行为和放热分解反应的动力学参数.结果表明该反应的微分形式的经验动力学模式函数、表观活化能和指前因子分别为(1-α)-0.506,155.5 kJ·mol-1和1013.5s-1,标题化合物的热爆炸临界温度为205.0℃.该反应的△S≠,△H≠和△G≠分别为6.0 J·mol-1·K-1,146.5 kJ·mol-1和143.7 kJ·mol-1.  相似文献   

4.
介绍了六氮杂异伍兹烷(HNIW)衍生物———四硝基-二(3,5-二硝基-4-氯苯甲酰基)六氮杂异伍兹烷的合成:在钯催化下将四乙酰基二苄基六氮杂异伍兹烷(TADB IW)氢解为四乙酰基六氮杂异伍兹烷(TAIW),再与对氯苯甲酰氯反应,得中间产物四乙酰基-二(对氯苯甲酰基)六氮杂异伍兹烷(TAB IW),90℃下TAB IW经发烟硫酸(w(SO3)=20%)与发烟硝酸(w(HNO3)=98%)硝化4 h,即得到目标化合物四乙酰基-二(3,5-二硝基-4-氯苯甲酰基)六氮杂异伍兹烷TNB IW,其熔点242~244℃,总收率57.2%;通过红外光谱、核磁共振、质谱及元素分析表征了目标产物、TAB IW、TAIW的结构。  相似文献   

5.
借助N,N’-二[(2,2,2-三硝基乙基-N-硝基)]乙二胺的恒容标准燃烧热(Qc),不同加热速率(β)非等温DSC曲线离开基线的初始温度(T0)、onest温度(Te)、最大峰顶温度,由Kissinger法和Ozawa法所得的热分解反应活化能(EK,EO)和指前因子(AK),从方程lnβi=ln[A0/be0(orp0)G(α)]+be0(orp0)Te(orp)i所得的值be0(orp0),从方程lnβi=ln[A0/(ae0(orp0)+1)G(α)]+(ae0(orp0)+1)lnTe(orp)i所得的ae0(orp0)值,从方程ln(βi/(Tei-T0i))=ln (A0/G(α))+bTei所得的b值,从方程ln(βi/(Tei-T0i))=ln (A0/G(α))+alnTei所得的a值,估算的比热容(cp)、密度(ρ)、热导率(λ)和分解热(Qd,取爆热之半)数据,Zhang-Hu-Xie-Li公式,Hu-Yang-Liang-Xie公式,基于Berthelot方程和Harcourt-Esson方程计算热爆炸临界温度的公式,Smith方程,Friedman公式,Bruckman-Guillet公式,热力学公式和Wang-Du公式,计算了由理想燃烧反应和Hess定律得到的BTNEDA的恒容标准燃烧能ΔcU(BTNEDA,s,298.15K)和标准生成焓ΔfHmθ(BTNEDA,s,298.15K),β→0时的T0、Te和Tp值(T00,Te0和Tp0),热爆炸临界温度(Tbe0和Tbp0),绝热至爆时间(tTIad),撞击感度50%落高(H50),热点起爆临界温度(Tcr),被350K环境包围的半厚和半径为1m的无限大平板、无限长圆柱和球形BTNEDA的热感度概率密度函数,相应于S(T)与T关系曲线最大值的峰温(TS(T)max),安全度(SD),临界热爆炸环境温度(Tacr)和热爆炸概率(PTE)。得到了评价BTNEDA热安全性的下列结果:(1)ΔcU(BTNEDA,s,298.15K)=-(3478.11±6.41)kJ.mol-1和ΔfHmθ(BTNEDA,s,298.15K)=-(53.546.41)kJ.mol-1;(2)T00=438.73K,TSADT=Te0=440.73K,Tp0=446.53K;Tbe0=449.88K,Tbp0=455.28K;(3)当EK=199.5kJ·mol-1,AK=1020.45s-1,cp=1.12J·g-1.K-1,Qd=3226J·g-1,T0=Te0=440.73K,T=Tb=455.26K,f(α)=3(1-α)2/3,a=10-3cm,ρ=1.87g·cm-3,t-t0=10-4s,Troom=293.15K和λ=0.00269J·cm-·1s-·1K-1,H50=15.03cm,tTIad=1.25s,Tcr,hot,spot=333.86K;对无限大平板,TS(T)max=350K,Tacr=345.47K,SD=28.55%,PTE=71.45%;对无限长圆柱,TS(T)max=354.5K,Tacr=349.73K,SD=39.31%,PTE=60.69%;对球,TS(T)max=357.00K,Tacr=352.42K,SD=45.81%,PTE=54.19%。运用密度泛函理论计算获得了BT-NEDA的优化构型及红外光谱,分析了其分子总能量、前沿轨道能量和原子净电荷分布。  相似文献   

6.
基于3,7-二硝基-1,3,5,7-四氮杂双环[3.3.1]壬烷(DPT)在HNO3-N H4N O3及HNO3中两种硝解机理,分别通过实验和理论计算方法对NH+4在DPT硝解反应中的作用进行了研究。将三种不同的铵盐(NH4)2H PO4,(NH4)2SO4和CH3C O O N H4添加到硝解体系中,考察了NH+4对HM X产率的影响。结果表明,与NH4N O3的作用相似,以上三种铵盐可提高HM X产率,提高率分别为41.5%、37.4%和20.7%。在不同的HNO3-铵盐体系中,当N H+4与DPT的摩尔比接近10时,HM X的产率均达到最大值,分别为56.3%、52.2%和35.5%。对比了HNO3-铵盐和H N O3-硝酸盐体系中D PT硝解反应的结果,发现N H+4对HM X产率的提高起主导作用。采用密度泛函理论(DFT)对NH+4在DPT硝解反应过程中的作用机理进行了理论解释,得出HNO3/N H+4体系中D PT硝解反应的活化能为133.95 k J·m ol-1,低于HNO3体系中的376.73 k J·mol-1。  相似文献   

7.
基于3,7-二硝基-1,3,5,7-四氮杂双环[3.3.1]壬烷(DPT)在HNO3-NH4NO3及HNO3中两种硝解机理,分别通过实验和理论计算方法对NH+4 在DPT硝解反应中的作用进行了研究。将三种不同的铵盐 (NH4)2HPO4,(NH4)2SO4和CH3COONH4添加到硝解体系中,考察了NH+4 对HMX产率的影响。结果表明,与NH4NO3的作用相似,以上三种铵盐可提高HMX产率,提高率分别为41.5%、37.4%和20.7%。在不同的HNO3-铵盐体系中,当NH+4 与DPT的摩尔比接近10时,HMX的产率均达到最大值,分别为56.3%、52.2%和35.5%。对比了HNO3-铵盐和HNO3-硝酸盐体系中DPT硝解反应的结果,发现NH+4 对HMX产率的提高起主导作用。采用密度泛函理论(DFT)对NH+4 在DPT硝解反应过程中的作用机理进行了理论解释,得出HNO3/NH+4 体系中DPT硝解反应的活化能为133.95 kJ·mol-1,低于HNO3体系中的376.73 kJ·mol-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号