首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
张丽娟  王振尧  陈戈  袁嵘  夏定国 《功能材料》2004,35(Z1):1807-1809
采用氩弧熔炼后热处理方法制备了PtBi金属间化合物材料.采用循环伏安和旋转圆盘电极手段进行电化学性能测试.通过在0.5mol/LH2SO4+0.25 mol/LCH3OH溶液中氧还原的起始电位和电流密度大小比较发现,与光滑铂电极相比,PtBi金属间化合物具有良好的氧还原催化性能和抗甲醇中毒性能.X射线光电子能谱(XPS)结果表明,PtBi材料中Pt的d电子空穴增加,可能是导致PtBi电极表面氧还原电流增大的原因.  相似文献   

2.
The nanocrystalline Pb-Ru pyrochlore prepared by reverse microemulsion method has been used as the cathode electro catalyst for oxygen reduction reaction in proton exchange membrane (Nafion 117) medium. The oxide particles prepared were found to have nanosized spherical as well as filament type particles. The nanocrystalline Pb-Ru pyrochlore was found to exhibit comparable electrocatalytic activity and stability with commercial platinum catalyst, for oxygen reduction reaction.  相似文献   

3.
This work demonstrates the synthesis of Pt ultrathin nanowires assisted by chromium hexacarbonyl [Cr(CO)6]. The nanowires exhibit a uniform diameter of 2–3 nm. The length can reach up to several microns. It was found that Cr species produced dumbbell-like nuclei which play a pivotal role in the formation of the Pt nanowires. Such Pt nanowires can be tuned to nanocubes by simply decreasing the concentration of [Cr(CO)6]. Compared to a commercial Pt/C catalyst (45 wt%, Vulcan, Tanaka) and Pt black (fuel cell grade, Sigma), the synthesized Pt nanowires exhibit superior performance in electrocatalytic oxygen reduction with a specific activity of 0.368 mA/cm2, which was 2.7 and 1.8 times greater than that of Pt/C (0.138 mA/cm2) and Pt black (0.202 mA/cm2), respectively. The mass activity of Pt nanowires (0.088 mA/μg) is 2.3 times that of Pt black (0.038 mA/μg) and comparable to that of Pt/C (0.085 mA/μg).   相似文献   

4.
Wang  Li  Wang  Yi 《Journal of Materials Science》2021,56(35):19589-19598

In this study, zeolite-templated mesocellular graphene foam was facilely synthesized by pyrolysis under different temperatures for oxygen reduction reaction. Investigations found that MGF can be regulated with different structure properties by controlling the pyrolysis temperature, where the MGF-900 (pyrolyzed under 900 °C) possessed a large BET specific surface area (619 m2 g?1), a hierarchically micro–meso–macroporous carbon framework, and a better balance between conductivity and active sites than the other counterparts (MGF-800 and MGF-1000). As a result, MGF-900 had the most excellent catalytic activity, the most positive onset potential of ??0.1 V and the highest current density of 5.01 mA cm?2 among the different samples and many other reported carbon-based catalysts. More importantly, despite no heterogeneous atoms doping, the catalytic activity of MGF-900 was nearly equal to that of commercial Pt/C catalyst. Regarding tolerance and stability, MGF-900 behaved even better. Therefore, as a superior metal-free electrocatalyst, MGF-900 is proved to be well applied in highly efficient oxygen reduction reaction.

  相似文献   

5.
Nanostructured Pt-Cu/C alloy catalysts synthesized by a reduction procedure with different reducing agents are investigated to find the origin of the enhanced activity of the oxygen reduction reaction for fuel cell applications. Prepared catalysts are characterized by various techniques, such as energy dispersive X-ray spectrometry, X-ray diffraction, transmission electron microscopy (TEM) and cyclic voltammetry. XRD analysis shows that all prepared catalysts exhibit face-centered cubic structures and have smaller lattice parameters than pure Pt catalyst. TEM images show that the particle size of the catalysts increases with the heat treatment temperature, and that different reducing agent causes different particle size and dispersion of the binary catalysts on XC-72R. Using the polyol method with CuSO4 as the precursor, the Pt-Cu/C sample is found to have good dispersion and high Cu loading. The Pt-Cu/C sample has a slightly higher specific activity value than that of Pt/C. The catalytic activity can be enhanced greatly with hydrogen reduction at 300 °C. Higher reduction temperatures cause the catalytic particles to agglomerate and therefore decreased catalytic activity.  相似文献   

6.
电催化二电子氧还原反应(2e-ORR)制备过氧化氢(H2O2)凭借其高效、安全和绿色特点,逐步发展为一种可能替代工业蒽醌法的新途径.碳基纳米材料具有电子导电性高、结构稳定性好、纳米结构调控容易、成本低等优势,是一类具有良好前景的2e-ORR制备H2O2的催化剂.针对该类碳基电催化材料的发展现状及相应材料上的活性中心和反...  相似文献   

7.
8.
Ruthenium metal is an effective catalyst for the reduction of NO with H2 and CO, but is volatile as RuO4 in oxidizing atmosphere. Ru ions in the B sites of the perovskite-like ruthenates and manganites ABO3 (A is La, Pb, Sr, K and B is Ru or Mn + up to 10 at % Ru) are shown to be very active for NO reduction. Losses of Ru by volatilization are substantially reduced. Ruthenates and Ru ions diluted in AMnO3 have similar activities. The latter show lower NH3 production. Substitution of 5% of the B-sites with Ni further increases the activity, but also the NH3 yield. The mechanism of the NO reduction is discussed.  相似文献   

9.
Journal of Materials Science - The development of composites from 1D and 2D nanocarbon building blocks, namely carbon nanotubes and graphene layers, with enhanced properties or novel...  相似文献   

10.
A novel method by combining NAC-FAS (NAnometer-sized Crystal Formation in Alcoholic Solutions) method and mechanical milling treatment was successfully applied for dispersing perovskite type oxide LaMnO3 finely on carbon support. Microscopic observation revealed that nano-sized oxide particles were dispersed fairly well in the carbon support. The gas diffusion-type electrode prepared by means of reducing number and quantity of chemicals exhibited more excellent oxygen reduction activity than the electrodes containing LaMnO3 prepared by RHP (Reverse Homogeneous Precipitation) method. It allowed current density as high as 300 mA cm−2 at −80 mV (vs. Hg/HgO) in 8 M KOH at 60 °C under air flow.  相似文献   

11.
制备廉价、高活性氧还原催化剂对于发展氢氧燃料电池清洁能源极为重要.在本论文中,我们利用黑木耳作为生物质材料,通过一种便捷的方法合成了高活性氧还原催化剂.黑木耳经水热和热解两个步骤,碳化形成BF-N-950催化剂.该催化剂在酸性和碱性溶液中的半波电势分别为0.77和0.91 V.采用BF-N-950催化剂作为膜电极得到的氢氧燃料单电池,峰值功率可达255 mW cm^-2.本文提出了使用生物质材料合成高性能氧还原催化剂的方法,为氢氧燃料电池的应用提供了有益探索.  相似文献   

12.
Efficient electrocatalytic rupture of energy-rich molecules(H2 and O2)is a green approach for gener-ating clean energy for modern societies.In this context,porphyry-type molecular electrocatalysts act intelligently toward oxygen reduction reaction(ORR),a fundamental process in fuel cells,due to their redox-rich chemistry,which involves core metal ions and macrocyclic ligands.The concerned scientific community has tried many times to correlate the ORR intermediates with their formation kinetics and simplify the associated multi H+/e-stages during the ORR process,constructing several volcano plots be-tween catalytic Tafel data,turnover frequencies,and overpotentials for many electrocatalysts.Despite the fact that many review articles on molecular electrocatalysts for ORR have been published,understanding the strategic implications and molecular catalyst intelligence towards homogenous ORR has been poorly explored.This review examined the relationships between volcano plots of current vs.thermodynamic parameters and the Sabatier principle in order to explain the intelligence of molecular electrocatalysts and approaches for their creation,as well as the difficulties and potential prospects of molecular electro-catalysts.These facts distinguish this review from previously published articles and will pique the scien-tific community's interest in avoiding trial-and-error procedures for catalyst creation while also allowing for more exact evaluations of the molecular catalyst's performance.  相似文献   

13.
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are crucial processes for energy conversion/storage systems, such as fuel cells, metal–air batteries, and water splitting. However, both reactions are severely restricted by their sluggish kinetics, thus requiring highly active, cost-effective, and durable electrocatalysts. Herein, we develop novel bifunctional nanocatalysts through surface nanoengineering of dealloying-driven nanoporous gold (NPG). Pd overlayers were precisely deposited onto the NPG ligament surface by epitaxial layer-by-layer growth. More importantly, the obtained NPG-Pd overlayer nanocatalysts exhibit remarkably enhanced electrocatalytic activities toward both the ORR and OER in alkaline media, benchmarked against a stateof- the-art Pt/C catalyst. The improved electrocatalytic performance is rationalized by the unique three-dimensional nanoarchitecture of NPG, enhanced Pd utilization efficiency from precise control of the Pd overlayers, and change in electronic structure, as revealed by density functional theory calculations.
  相似文献   

14.
Li  Yingjie  Zhang  Haichuan  Han  Nana  Kuang  Yun  Liu  Junfeng  Liu  Wen  Duan  Haohong  Sun  Xiaoming 《Nano Research》2019,12(1):177-182
Nano Research - Oxygen reduction efficiency holds the key for renewable energy technologies including fuel cells and metal-air batteries, which involves coupling diffusion-reaction-conduction...  相似文献   

15.
Facile reduction of p-nitrophenol to p-aminophenol by sodium borohydride catalysed by cobalt nanoparticles (CoNPs) has been discussed. A simple approach has been made to synthesize highly active and ordered structures of CoNPs. The air-stable nanoparticles were prepared from cobalt sulphate using tetrabutyl ammonium bromide as surfactant and sodium borohydride as reductant. The cobalt nanocolloids in aqueous medium were found to be efficient reusable catalysts for the p-nitrophenol reduction. Palladium nanoparticles prepared from palladium chloride and the same surfactant were found to reduce p-nitrophenol but lose their catalytic efficiency after recovery. Based on chemical and kinetic studies, an attempt has been made to elucidate the mechanism of p-nitrophenol reduction using these nanoclusters.  相似文献   

16.
Journal of Materials Science: Materials in Electronics - Novel three-dimensional electrode materials with high capacitance, long cycle stability and electrocatalytic activity are designed through...  相似文献   

17.
Dual-doping of carbon,especially the combination of nitrogen and a secondary heteroatom,has been demonstrated efficient to optimize the oxygen reduction reaction(ORR)performance.However,the optimum dual-doping is still not clear due to the lack of strong experimental proofs,which rely on a reliable method to prepare carbon materials that can rule out the interference factors and then emphasize only the doping effects.In this work,an inside-out doping method is reported to prepare carbon submicrotubes(CSTs)as a material to study the principles of designing dual-doping catalysts for ORR.The interference factors including the metal impurities and doping gradient in the bulk phase are excluded,and the doping effects including the structural and chemical variation of carbon are studied.P-doping exhibited a higher pore-forming ability to perforate carbon and a lower doping content,but a higher ORR catalytic activity as compared with S-and B-doped N-CSTs,demonstrating the N,P co-doping is more efficient in making carbon-based catalysts for ORR.First-principle calculations reveal that the edge C situated around the oxidized P site nearby a graphitic N atom is the active site that shows the lowest ORR overpotential comparable to Pt-based catalysts.This study suggests that the catalytic activity of dual-heteroatoms-doped carbons not only depends on the intrinsic chemical bonding between heteroatoms and carbon,but also is affected by the structural variation generated by introducing different atoms,which can be extended to the study of other kinds of functionalization of carbon and potential reactions besides ORR.  相似文献   

18.
Over the past few years, electrocatalysis for the oxygen reduction reaction in alkaline solutions has undergone tremendous advances, and non-precious metal catalysts are of prime interest. In this study, we present a highly promising CoO@Co/N-C (where N-C represents a N-doped carbon material) catalyst, achieving an onset potential of 0.99 V (versus the reversible hydrogen electrode (RHE)) and a limiting current density of 7.07 mA-cm-2 (at 0.3 V versus RHE) at a rotation rate of 2,500 rpm in an O2-saturated 0.1 M KOH solution, comparable to a commercial Pt/C catalyst. The H2--O2 alkaline fuel cell test of CoO@Co/N-C as the cathode reveals a maximum power density of 237 mW.cm 2. Detailed investigation clarifies that a synergistic effect, induced by C-N, Co-N-C, and CoO/Co moieties, is responsible for the bulk of the gain in catalytic activity.  相似文献   

19.
We prepared carbon-supported PtCo bimetallic nanoparticles (PtCo/C) as electrode catalysts for the oxygen reduction reaction (ORR) at the cathodes in polymer electrolyte membrane fuel cells (PEFCs) by an electron-beam irradiation reduction method (EBIRM). An EBIRM allows nanoparticles to be easily prepared by the reduction of precursor ions in an aqueous solution irradiated with a high-energy electron beam. The structures of PtCo/C were characterized by transmission electron microscopy, inductively coupled plasma atomic emission spectrometry, and the techniques of X-ray diffraction and X-ray absorption near edge structure. It found for the first time that both PtCo alloy and Co oxide were prepared simultaneously on the carbon support by an EBIRM. The catalytic activity and durability of PtCo/C were evaluated by linear-sweep voltammetry and cyclic voltammetry, respectively. The addition of Co to Pt/C not only enhanced the catalytic activity for the ORR but also improved the catalytic durability. As the Co concentration increased, both behaviors became pronounced. These improvements are explained by the effects of both PtCo alloy and Co oxide. We demonstrated that an EBIRM can not only synthesize the alloy and oxide simultaneously on the carbon support but also mass-produce the electrode catalysts for PEFC cathodes.  相似文献   

20.
Precious metal alloys have been the predominant electrocatalyst used for oxygen reduction in fuel cells since the 1960s. Although performance of these catalysts is high, they do have drawbacks. The two main problems with precious metal alloys are catalyst passivation and cost. This is why new novel catalysts are being developed and employed for oxygen reduction. This paper details the low temperature solvothermal synthesis and characterization of carbon nanotubes that have been doped with both iron and cobalt centered phthalocyanine. The synthesis is a novel low-temperature, supercritical solvent synthesis that reduces halocarbons to form a metal chloride byproduct and carbon nanotubes. Perchlorinated phthalocyanine was added to the nanotube synthesis to incorporate the phthalocyanine structure into the graphene sheets of the nanotubes to produce doped nanotubes that have the catalytic oxygen reduction capabilities of the metallo-phthalocyanine and the advantageous material qualities of carbon nanotubes. The cobalt phthalocyanine doped carbon nanotubes showed a half wave oxygen reduction potential of -0.050 ± 0.005 V vs Hg\HgO, in comparison to platinum's half wave oxygen reduction potential of -0.197 ± 0.002 V vs Hg\HgO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号