共查询到20条相似文献,搜索用时 16 毫秒
1.
2.
3.
网络计划资源均衡属于组合优化问题,为了能快速有效地求解此类问题,提出了一种多智能体布谷鸟算法。针对标准布谷鸟算法缺乏信息共享的缺陷,将多智能体系统引入布谷鸟算法中。多智能体的邻域竞争合作算子实现智能体间信息的交流,加快算法收敛速度;变异算子扩大搜索范围增加种群多样性;自学习算子提高局部寻优的能力;布谷鸟算法的Levy飞行进化机制能有效地跳出局部最优实现全局收敛。实例仿真结果证实了,与其他算法相比多智能体布谷鸟算法能更有效地求解网络计划资源均衡优化问题。 相似文献
4.
多目标进化算法因其在解决含有多个矛盾目标函数的多目标优化问题中的强大处理能力,正受到越来越多的关注与研究。极值优化作为一种新型的进化算法,已在各种离散优化、连续优化测试函数以及工程优化问题中得到了较为成功的应用,但有关多目标EO算法的研究却十分有限。本文将采用Pareto优化的基本原理引入到极值优化算法中,提出一种求解连续多目标优化问题的基于多点非均匀变异的多目标极值优化算法。通过对六个国际公认的连续多目标优化测试函数的仿真实验结果表明:本文提出算法相比NSGA-II、 PAES、SPEA和SPEA2等经典多目标优化算法在收敛性和分布性方面均具有优势。 相似文献
5.
针对IaaS(Infrastructure as a Service)云计算中资源调度的多目标优化问题,提出一种基于改进多目标布谷鸟搜索的资源调度算法。在多目标布谷鸟搜索算法的基础上,通过改进随机游走策略和丢弃概率策略提高了算法的局部搜索能力和收敛速度。以最大限度地减少完成时间和成本为主要目标,将任务分配特定的VM(Virtual Manufacturing)满足云用户对云提供商的资源利用的需求,从而减少延迟,提高资源利用率和服务质量。实验结果表明,该算法可以有效地解决IaaS云计算环境中资源调度的多目标问题,与其他算法相比,具有一定的优势。 相似文献
6.
个体的适应度赋值和群体的多样性维护是进化算法的两个关键问题。首先,一方面,定义了Paretoε-支配关系的相关概念,通过Paretoε-支配关系确定个体的强度Pareto值,根据个体的强度Pareto值对群体进行Pareto分级排序,实现优胜劣汰;另一方面,使用拥挤距离估算个体的拥挤密度,淘汰位于拥挤区的一些个体,维持群体的多样性。然后,根据差分进化算法的特点,使用适当的进化策略和控制参数,给出了一种用于求解多目标优化问题的差分进化算法DEAMO。最后,数值实验表明,DEAMO在求解标准的多目标优化问题时性能表现优良。 相似文献
7.
提出了一种适应于多目标进化算法的变异越界处理策略,成功地将这些变异算子应用到多目标进化优化问题中,从多目标优化收敛性的角度比较了这些变异算子的性能。通过一组实验表明这种越界处理方法是非常有效的,单目标优化中的这些变异算子具有与多项式变异算子相当的分布性,同时取得了更好的收敛性能。 相似文献
8.
9.
基于新模型的动态多目标优化进化算法 总被引:1,自引:1,他引:1
在动态多目标优化中,各目标通常相互冲突,其最优解往往有无穷多个,如何在时间连续发生变化的情况下依然能求出分布均匀且数量多的Pareto最优解供决策者选择十分重要.对动态多目标优化问题连续变化的时间变量区间进行了任意划分,在得到的每个时间子区间上把动态多目标优化问题近似为静态多目标优化问题,进而在每个子区间上定义了种群的静态序值方差和静态密度方差,然后把目标个数任意的动态多目标优化问题转化成一个双目标静态优化问题.在给出的一种能自动检测时间变化的自检算子下,提出一种新的动态多目标优化进化算法,并且证明了算法的收敛性.计算机仿真表明新算法对动态多目标优化问题求解十分有效. 相似文献
10.
11.
针对差分进化算法在解决大规模多目标优化问题时,出现优化后期多样性不足、收敛速度慢等问题,提出一种多群多策略差分大规模多目标优化算法.根据个体特性不同,将种群分为3个等级不同的子群,利用多群策略的优势维持种群多样性.为减少种群陷入局部最优的概率,在不同等级的子群中引入多个变异策略以较好地平衡子群个体的多样性和收敛性.为保证不同子群间信息得到有效交换,根据3个子群的进化状态确定重新分群时机,既保证个体在本群内得到充分进化,又保证个体在一定的条件下进行信息交换.为利用更多的信息生成优秀的子代,将更新后的子群与其父代子群合并,选出下一代子群.为验证所提出算法的有效性,在一组大规模基准测试问题上评估算法的性能,实验结果表明,所提出算法在两个常用测试指标IGD和HV上明显优于其他对比算法. 相似文献
12.
为提高蝗虫优化算法(GOA)求解多目标问题的性能,提出一种基于多策略融合的混合多目标蝗虫优化算法(HMOGOA)。首先,利用Halton序列建立初始种群,保证种群在初始阶段具有均匀分布和较高多样性;然后,通过差分变异算子引导种群变异,促进种群向优势个体移动同时进行更大范围寻优;最后,利用自适应权重因子根据种群优化情况动态调整算法全局搜索和局部寻优能力,提高优化效率及解集质量。选取7个典型函数进行实验测试,并将HMOGOA与多目标蝗虫优化、多目标粒子群(MOPSO)、基于分解的多目标进化(MOEA/D)及非支配排序遗传算法(NSGA Ⅱ)对比分析。实验结果表明,该算法避免了其他四种算法的局部最优问题,明显提高了解集分布均匀性和分布广度,具有更好的收敛精度和稳定性。 相似文献
13.
14.
15.
解决多目标优化问题的差分进化算法研究进展 总被引:1,自引:0,他引:1
差分进化(differential evolution,DE)是一种简单但功能强大的进化优化算法.由于其优秀的性能,其诞生之日起就吸引了各国研究人员的关注.作为一种基于群体的全局性启发式搜索算法,差分进化算法在科学和工程中有许多成功的应用.本文对解决多目标优化问题的差分进化算法研究进行了综述,对差分进化的基本概念进行了详细的描述,给出了几种解决多目标优化问题的差分进化算法变体,并且给出了差分进化算法解决多目标优化问题的理论分析,最后,给出了差分进化算法解决多目标优化问题的工程应用,并指出了未来具有挑战性的研究领域. 相似文献
16.
为了解决进化算法在求解全局优化时易陷入局部最优和收敛速度慢的问题,设计了一个杂交算子,利用种群中最好点与其他点间的关系确定搜索方向,从而快速地找到实值函数的下降方向,一旦算法找到优于种群中最好点的点,利用所构造的两条直线交点的投影对其进行进一步优化,使函数值更迅速地下降.提出了适合杂交算子的初始种群生成方法.设计了一个既能提高收敛速度又能摆脱局部最优的变异算子以增强算法的效果.在此基础上,提出了一个求解全局优化问题的高效进化算法,并从理论上证明了全局收敛性,从数值上验证了有效性. 相似文献
17.
18.
为提高蝗虫优化算法(GOA)求解多目标问题的性能,提出一种基于多策略融合的混合多目标蝗虫优化算法(HMOGOA)。首先,利用Halton序列建立初始种群,保证种群在初始阶段具有均匀分布和较高多样性;然后,通过差分变异算子引导种群变异,促进种群向优势个体移动同时进行更大范围寻优;最后,利用自适应权重因子根据种群优化情况动态调整算法全局搜索和局部寻优能力,提高优化效率及解集质量。选取7个典型函数进行实验测试,并将HMOGOA与多目标蝗虫优化、多目标粒子群(MOPSO)、基于分解的多目标进化(MOEA/D)及非支配排序遗传算法(NSGA Ⅱ)对比分析。实验结果表明,该算法避免了其他四种算法的局部最优问题,明显提高了解集分布均匀性和分布广度,具有更好的收敛精度和稳定性。 相似文献
19.
针对差分进化算法(Differential Evolution Algorithm,DE)求解多目标优化问题时易陷入局部最优的问题,设计了一种双向搜索机制,它通过对相反进化方向产生的两个子代个体进行评价,来增强DE算法的局部搜索能力;设计了多种群机制,它可令各子群独立进化一定次数再执行全局进化,以完成子群间进化信息的交流,这一方面降低了算法陷入局部最优的风险,另一方面增强了Pareto解集的多样性,使Pareto前沿面的解集分布更为均匀。实验结果表明,相比于NSGA-II等同类算法,所提方法在搜索Pareto最优解时效率更高,并且Pareto最优解集的精度及分布程度比前者更好。 相似文献
20.
文章利用一维搜索与局部极小点的消去技术设计了一个新的进化算法。此算法在迭代过程中,可不断消除那些比目前已找到的最好点差的局部极小点,从而使局部极小点的数目随着迭代的进行大量地减少,使算法更易找出全局极小点。另外,将一维搜索巧妙地用于算法之中,加快了收敛速度。并且证明了算法的全局收敛性,最后的数值实验也表明新算法十分有效。 相似文献