首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
水力压裂是石油、天然气开采中应用较广的一门技术,支撑剂是压裂施工的一种关键材料.支撑剂由压裂液带入到地下裂缝中并直接影响着压裂效果.目前市面上使用的支撑剂主要是石英砂、陶粒、树脂覆膜支撑剂,随着支撑剂技术的日臻成熟,许多新的支撑剂也被研发出来.简要地总结了现在的支撑剂的优缺点,主要介绍了三种新型支撑剂,包括低密度支撑剂、表面改性支撑剂和液体支撑剂等,讨论了发展趋势,对压裂支撑剂研究和相关行业具有一定的指导意义..  相似文献   

2.
针对油气田开发对压裂支撑剂的性能要求愈来愈高的产业重大需求,油田化学领域运用现代化学理论与技术,开展了一系列卓有成效的压裂支撑剂化学覆膜改性研究和产品研发,为油气工业的快速发展做出了突出贡献。本文从化学和工程两个视角,系统阐述了压裂支撑剂化学覆膜改性的研究方向。化学角度,主要研究方向包括:在支撑剂表面涂层构成化学覆膜、通过化学手段科学改变支撑剂表面特性、化学涂层与改性并举。工程角度,大致分为三个重要研究方向:一是通过在石英砂、陶粒等支撑剂表面涂敷覆膜来提升支撑剂强度;二是通过在石英砂、陶粒等支撑剂表面涂敷覆膜来降低整个支撑剂的相对密度(如自悬浮涂层技术等);三是石英砂、陶粒等支撑剂表面涂敷覆膜实现堵水疏油的功能。本文还简要阐述了树脂覆膜支撑剂、疏水支撑剂、憎水憎油支撑剂、自悬浮支撑剂、自聚型支撑剂、无机聚合物涂覆支撑剂以及功能性支撑剂等主要产品的特性。展望支撑剂未来的发展趋势,提出支撑剂应向多功能、高性能、小尺寸和智能化方向发展以及开发出更加适合无水压裂的支撑剂和原位生成型自支撑压裂体系。  相似文献   

3.
在保证支撑剂高强度的条件下,尽可能降低支撑剂的视密度是页岩气清水压裂技术开发的关键。本工作以低品位铝矾土、微米SiO2为主原料,水玻璃、纳米SiO2、氧化锰为辅料,用等离子动态烧结和后期高温烧结法制备方法制备超轻支撑剂,探讨了不同氧化锰掺杂量和不同烧结时间对其物相成分、体积密度、视密度和承压69 MPa下破碎率的影响。并基于经典PKN压裂模型模拟超轻支撑剂在裂缝中沉降与运移规律进行研究。结果表明,成功制备了视密度为1.639 g/cm3,在69 MPa下破碎率8.91%的超轻支撑剂,其最佳氧化锰掺杂量为7.5wt%,最佳烧结温度和烧结时间为950℃和2 h。超轻支撑剂比常规支撑剂在水平方向上运移了更长的距离,支撑剂在裂缝内部的分布也相对更均匀,可以满足中深油井的清水压裂要求。  相似文献   

4.
《Ceramics International》2020,46(2):1947-1953
High strength proppants were always in demand for hydraulic fracturing techniques used in unconventional reservoirs for oil and gas extraction processes. To support this concept, relatively low-alumina content glass-ceramic proppants based on the system Fe2O3–TiO2–MgO–CaO–SiO2–Al2O3 have been prepared by using frit, kaolin, and bentonite in a glaze formulation. By deposition of glaze drops on porous ceramic tile, a semi-dry proppant beads were obtained. Different frit compositions of aluminum oxide replacing calcium oxide were used to obtain highly sintered proppants with a robust glassy matrix at 1100 °C in a fast firing cycle. The microstructure by scanning electron microscopy (SEM) and the phase structure by X-ray diffraction (XRD) were investigated. The results revealed the formation of two main phases; cristobalite and calcium aluminum silicate in addition to the other two phases of mullite and Diopside ferrian in some samples. By evaluating the employed fabricated ceramic compositions as high conductivity and high strength proppants for hydraulic fracturing process it was found that all samples exhibited competitive properties according to American Petroleum Institute standards (API RP 19C Standard) for proppants criteria. Crushing loss under 7500 psi closed pressure was (from 1.5% to 6.7%), the weight loss by acids attack was (from 0.001% to 0.07%), sphericity and roundness were (0.9) in addition, the apparent and bulk densities were (from 2.51 to 2.58 g/cm³) and (from 1.46 to 1.50 g/cm³), respectively.  相似文献   

5.
Ceramic proppants are preferred in hydraulic fracturing because of their high strength, good sphericity, and excellent acid corrosion resistance. Bauxite is the main raw material of ceramic proppants, but with the increasing depletion of bauxite resources, substitutes for bauxite need to be sought. Coal gangue is a solid waste that is rich in SiO2 and Al2O3, making it a potential substitute for the preparation of ceramic proppants. The use of coal gangue to prepare ceramic proppants can reduce the cost of ceramic proppants and benefit environmental protection. Studies on using coal gangue to prepare ceramic proppants have been conducted and achieved progress, but further improvement can still be obtained. Here, the basic principle, progress, and prospects of coal gangue ceramic proppants are reviewed. First, coal gangue ceramic proppants are divided into two categories, namely, proppants prepared using coal gangue as an auxiliary material and proppants prepared using coal gangue as the main material. Second, the progress of research of coal gangue ceramic proppants is summarized from the perspective of additives, and the influence of different kinds of additives on the sintering temperature and performance of proppants is discussed. Lastly, the future prospects of coal gangue ceramic proppants are presented.  相似文献   

6.
Hydraulic fracturing has been used by the oil and gas industry as a way to boost hydrocarbon production since 1947. Recent advances in fracturing technologies, such as multistage fracturing in horizontal wells, are responsible for the latest hydrocarbon production boom in the US. Linear or crosslinked guars are the most commonly used fluids in traditional fracturing operations. The main functions of these fluids are to open/propagate the fractures and transport proppants into the fractures. Proppants are usually applied to form a thin layer between fracture faces to prop the fractures open at the end of the fracturing process. Chemical breakers are used to break the polymers at the end of the fracturing process so as to provide highly conductive fractures. Concerns over fracture conductivity damage by viscous fluids in ultra‐tight formations found in unconventional reservoirs prompted the industry to develop an alternative fracturing fluid called “slickwater”. It consists mainly of water with a very low concentration of linear polymer. The low concentration polymer serves primarily to reduce the friction loss along the flow lines. Proppant‐carrying capability of this type of fluids is still a subject of debate among industry experts. Constraints on local water availability and the potential for damage to formations have led the industry to develop other types of fracturing fluids such as viscoelastic surfactants and energized fluids. This article reviews both the traditional viscous fluids used in conventional hydraulic fracturing operations as well as the new family of fluids being developed for both traditional and unconventional reservoirs. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40735.  相似文献   

7.
In hydraulic fracturing of shale formations, compared to conventional reservoirs, the fracturing fluid injected is of low‐viscosity and hence during pumping the proppant settles significantly, forming a proppant bank. Motivated by this consideration, we initially develop a high‐fidelity process model of hydraulic fracturing to describe the dominant proppant settling behavior during hydraulic fracturing process. Second, a novel remeshing strategy is developed to handle the high computational requirement due to moving boundaries. Third, a section‐based optimization method is employed to obtain key fracture design parameters for enhanced productivity in shale formations subject to given fracturing resources. Fourth, a reduced‐order model is constructed to design a Kalman filter and to synthesize a real‐time model‐based feedback control system by explicitly taking into account actuator limitations, process safety and economic considerations. We demonstrate that the proposed control scheme can regulate the uniformity of proppant bank heights along the fracture at the end of pumping. © 2017 American Institute of Chemical Engineers AIChE J, 64: 1638–1650, 2018  相似文献   

8.
Water‐based polymer gels are used widely in the oil and gas industry to viscosify fluids used in the hydraulic fracturing of production wells, where they serve to increase the force applied to the rock and to improve the transport of proppants used to maintain the fracture after formation. After fracturing, the gel must be degraded to a low viscosity with enzymes or gel breakers. Existing systems add the breaker either directly to the gelant or encapsulated in beads that are crushed when the applied pressure is released and the fractures close. In the former case, the gel may be broken prematurely, and this may prevent efficient fracture propagation and proppant transport, whereas in the latter case, the breaker may not be uniformly distributed throughout the gel, with the result that the gel is incompletely broken and the hydraulic conductivity of the well is reduced. To obtain delayed release, combined with the homogeneous distribution of enzyme throughout the gel, polyethylenimine–dextran sulfate polyelectrolyte complexes were used to entrap pectinase. Such particles were originally developed to entrap pharmaceuticals, and we previously demonstrated their ability to delay the release of gel crosslinking agents for oilfield applications. The degradation of both the viscosity and viscoelastic moduli of borate‐crosslinked guar gel by pectinase loaded in polyelectrolyte nanoparticles was delayed by up to 12 h, compared to about 2 h for equivalent systems where the pectinase was not entrapped. The combination of homogeneous mixing and the delayed release of enzymes packaged in polyelectrolyte complex nanoparticles showed promise for improved cleanup after hydraulic fracturing. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
支撑剂在压裂液中的沉降计算多采用单颗粒支撑剂在静止液体中的Stokes公式,没有考虑压裂液输送支撑剂是一个动态过程。同时,支撑剂在低粘滑溜水压裂液中的沉降运移规律不同于以往的高粘压裂液。对此,修正了单颗粒Stokes沉降公式,并且考虑支撑剂沉降所形成砂堤的稳定性,给出了动态沉降计算方法。对影响临界速度和沉降速度的主要因素计算分析后,认为裂缝高度或过流高度越大、支撑剂粒径越小和密度越大,临界流速越大,形成的砂堤也就越稳定。通过与相关室内实验结果对比后,表明所用理论方法比较可靠。计算结果表明,加砂设计时应逐渐降低排量,这与目前所采用的保持排量不变的加砂方式不同,提供了新的压裂设计思路。  相似文献   

10.
A methodology for identifying suitable locations for the CO2-based production of olefins in Germany is presented. Based on electricity and CO2 requirements, locations are identified that can provide sufficient CO2 and renewable energy for the conversion of CO2 to olefins. In addition, the use of existing infrastructures is taken into account. The regional, technical renewable energy potential in Germany is sufficient to produce ∼ 800 kt of olefins from CO2-based methanol per year in one plant. But the currently available CO2 point sources with high CO2 concentrations of around 100 % are not sufficient to meet the CO2 requirement of an 800 kt a−1 methanol-to-olefins plant. If existing refineries are preferred due to existing infrastructure services, locations in the north of Cologne, in Lower Saxony, and in Brandenburg are particularly suitable. A full substitution of fossil olefins by CO2-based olefins is possible in Germany. The challenge is to provide sufficient renewable electricity for the production of H2 with a low CO2 intensity.  相似文献   

11.
杜红莉  张薇  马峰  刘超 《硅酸盐通报》2017,36(8):2625-2630
水力压裂工艺技术的核心是形成导流能力强的裂缝.支撑剂是水力压裂过程中能够进入被压开的裂缝并使其不再重新闭合的一种固体颗粒.它能够帮助裂缝处于开启状态,提供油气由地层到井筒的渗流通道,是水力压裂施工中的关键材料.本文概述了近年来国内外水力压裂用支撑剂的发展历程,几种常规支撑剂的类型及特点,重点对几类新型支撑剂进行了综述,最后,针对目前支撑剂技术面临的挑战提出了其今后发展趋势.  相似文献   

12.
Nonionic polyacrylamide (NPAM) with controlled molecular weight was successfully synthesized as a gel fracturing fluid by aqueous solution polymerization. The effects of the monomer concentration, initiator concentration, reaction time, feeding temperature and reaction temperature on the molecular weight were systematically investigated through single‐factor and orthogonal experiments. The NPAM molecular weight can be controlled by adjusting these factors. The decisive factor is the acrylamide concentration, whereas the initiator concentration and feeding temperature are secondary factors. These synthetic NPAMs can be crosslinked with zirconium acetate to produce a gel fracturing fluid for use in low permeability oil reservoirs. Gel fracturing fluids based on synthetic NPAMs have high shear resistance, low filtration performance, easy gel breaking performance, good proppant carrying capability and low core damage capability. By adjusting the NPAM or crosslinker concentrations, the gel fracturing fluid can be adapted for use in low permeability oil reservoirs for a wide temperature range (60–120°C). © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41637.  相似文献   

13.
郭玲  张黎  杨岩 《辽宁化工》2014,(5):576-577
水力压裂是油气井增产、注水井增注的一项重要的技术措施,其目的是提供一条连通地层与井筒的高导流能力通道,改变地层流体的渗流方式,提高生产指数。裂缝导流能力是指支撑裂缝所能提供液体流动的能力的大小,而影响裂缝导流能力大小的因素可归结为:储层条件、支撑剂物理性质、压裂工艺水平和压后生产管理这四个方面,并对这些因素进行了分析。  相似文献   

14.
Natural gas hydrate (NGH) is a highly efficient and clean energy, with huge reserves and widespread distribution in permafrost and marine areas. Researches all over the world are committed to developing an effective exploring technology for NGH reservoirs. In this paper, four conventional in-situ hydrate production methods, such as depressurization, thermal stimulation, inhibitor injection and CO2 replacement, are briefly introduced. Due to the limitations of each method, there has been no significantly breakthrough in hydrate exploring technology. Inspired by the development of unconventional oil and gas fields, researchers have put forward some new hydrate production methods. We summarize the enhanced hydrate exploiting methods, such as CO2/N2–CH4 replacement, CO2/H2–CH4 replacement, hydraulic fracturing treatment, and solid exploration; and potential hydrate mining techniques, such as self-generating heat fluid injection, geothermal stimulation, the well pattern optimization of hydrate exploring. The importance of reservoir stimulation technology for hydrate exploitation is emphasized, and it is believed that hydrate reservoir modification technology is a key to open hydrate resources exploitation, and the major challenges in the process of hydrate exploitation are pointed out. The combination of multiple hydrate exploring technologies and their complementary advantages will be the development trend in the future so as to promote the process of hydrate industrialization.  相似文献   

15.
Efficient and safe storage of injected supercritical carbon dioxide (CO2) underground is now one potential solution for reducing CO2 emissions in the atmosphere. Preventing any CO2 leakage through a wellbore annulus after injection is a key to maintaining long-term wellbore integrity. Most wells in depleted oil and gas fields may be re-used to inject CO2. These wells were mostly cemented with conventional Portland cement. It is thus crucial to study how such cement behaves at depth in CO2-rich fluids.Set cement samples are exposed to CO2 fluids under pressure and temperature to simulate downhole conditions. The degraded cement exhibits significant mineralogical changes and heterogeneous porosity distribution. The bulk porosity evolution, as well as local porosity gradients through the samples, is quantified using combined mercury porosimetry and back-scattered electron image analysis. Both techniques show an initial sealing stage related to calcium carbonate precipitation plugging the porosity, followed by a dissolution stage marked by a significant increase of porosity.  相似文献   

16.
This paper introduces a mathematical formulation to identify promising CO2 capture and utilization (CCU) processing paths and assess their production rates by solving an optimization problem. The problem is cast as a multi-objective one by simultaneously maximizing a net profit and life cycle greenhouse gas (GHG) reduction. Three case studies are illustrated using an exemplary CCU processing network. The results indicate the optimal solution is greatly influenced by the scale of CO2 emission source, market demand, and hydrogen availability. Moreover, with the current system of measuring the GHG reduction regarding a business-as-usual level, if the aim is to achieve a GHG reduction within a national boundary, the question of whether CCU plants producing a product of same functionality through conventional means, which the CO2-based product can replace, exists in the country can come into consideration. This systematic identification will assist decision-making regarding future R&D investment and construction of large-scale CCU plants.  相似文献   

17.
采用无压烧结技术制备了软锰矿掺杂的高强度氧化铝质压裂支撑剂.通过X射线衍射、压汞式孔隙分析、扫描电子显微镜和筒压法分别研究了由软锰矿引入的MnO2和Fe2O3对支撑剂物相组成、孔结构、晶粒尺寸和抗破碎能力的影响.结果表明:当软锰矿掺杂量为0~5%(质量分数,下同)时,烧结样品中包括氧化铝、莫来石和钛酸铝相,软锰矿的掺入未明显改变晶体结构;当软锰矿掺量为5%时,Fe3+取代Al3+与组分中的TiO2反应并形成固溶体,MnO2固溶于Al2O3晶粒中,促进了Al2O3晶粒生长,过剩的Fe2O3和MnO2存在于陶瓷晶界处并在高温煅烧F形成液相促进致密化烧结;未掺杂样品中存在大量连通气孔,显气孔率为14.79%:掺入5%软锰矿后,显气孔率降低至5.29%,样品内部多为均匀分布的近球形闭气孔;在52MPa压力条件下,5%软锰矿掺杂样品的破碎率与未掺杂样品相比减少80.95%,抗破碎能力显著提高.  相似文献   

18.
以二级铝矾土(65wt%Al2O3)和钾长石为原料,在添加不同含量的白云石的基础上制备了超低密高强的压裂支撑剂,并研究了白云石的添加量对烧成温度和石油压裂支撑剂性能的影响.结果表明:在原料中加入适量的钾长石,不仅可以降低烧结温度,同时还能降低压裂支撑剂的密度;添加白云石能有效降低支撑剂的烧结温度和破碎率,同时白云石和钾长石共同作用,促进了烧结致密化的进行,有利于棒状莫来石的生长发育,从而提高了支撑剂的强度.当白云石的添加量为2wt%,烧结温度为1330 ℃时,所制备的压裂支撑剂性能最优,其体密仅为1.30 g/cm3,52 MPa下的破碎率为4.51wt%.  相似文献   

19.
The reaction kinetics and molecular mechanisms of CO2 absorption using nonaqueous and aqueous monoethanolamine (MEA)/methyldiethanolamine (MDEA)/2-amino-2-methy-1-propanol (AMP) solutions were analyzed by the stopped-flow technique and ab initio molecular dynamics (AIMD) simulations. Pseudo first-order rate constants (k0) of reactions between CO2 and amines were measured. A kinetic model was proposed to correlate the k0 to the amine concentration, and was proved to perform well for predicting the relationship between k0 and the amine concentration. The experimental results showed that AMP/MDEA only took part in the deprotonation of MEA-zwitterion in nonaqueous MEA + AMP/MEA + MDEA solutions. In aqueous solutions, AMP can also react with CO2 through base-catalyzed hydration mechanism beside the zwitterion mechanism. Molecular mechanisms of CO2 absorption were also explored by AIMD simulations coupled with metadynamics sampling. The predicted free-energy barriers of key elementary reactions verified the kinetic model and demonstrated the different molecular mechanisms for the reaction between CO2 and AMP.  相似文献   

20.
低密度支撑剂是通过化学改性、物理改性等方法制备得到的高性能支撑剂,具有密度低、沉降速度低等特性。本文在调研大量文献基础上,根据改性方法不同将低密度支撑剂分为多孔无包覆陶瓷低密度支撑剂、多孔无机物包覆低密度支撑剂、多孔树脂包覆低密度支撑剂,对比了不同类型低密度支撑剂制备体系组成、密度以及承压性能,总结了制备不同类型低密度支撑剂的机理、主要影响因素及应用情况。根据制备方式不同将超低密度支撑剂(ultra-light weight proppants, ULWP)分为常规方法制备、新技术制备两类。提出未来可通过结合使用多种添加剂、优化烧制工艺等方式探索莫来石相、刚玉相等晶体结构,实现支撑剂超低密度与高强度的有效结合,利用疏水改性、结构改性等方式向多功能、高性能发展,为相关研究提供借鉴和参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号