首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
采用传统陶瓷烧结工艺制备了(1-x)(K0.5Na0.5)NbO3-xLiNbO3无铅压电陶瓷,研究了陶瓷的结构、烧结特性及电性能特征.制备的(K0.5Na0.5)NbO3-LiNbO3陶瓷为单一的钙钛矿结构,室温下其相结构随LiNbO3含量增加逐渐由正交相向四方相转变,显微结构也由于LiNbO3含量的不同而表现出很大差异.与(K0.5Na0.5)NbO3陶瓷相比,(K0.5Na0.5)NbO3-LiNbO3陶瓷的烧结温度降低,烧结特性得到改善. (K0.5Na0.5)NbO3-LiNbO3陶瓷表现出优越的压电性能,其中0.94(K0.5Na0.5)NbO3-0.06LiNbO3(x=0.06)陶瓷的压电常数d33达到205pC/N,机电耦合系数kp为40.3%,kt达到49.8%.  相似文献   

2.
综述了近年来(K,Na)NbO3基无铅压电陶瓷在掺杂改性以及晶粒定向技术制备织构化陶瓷研究的新进展,重点分析了(K,Na)NbO3基无铅压电陶瓷的K/Na比为0.5和非0.5时,陶瓷压电性能上的差异,发现K/Na比偏离0.5时,具有更为优异的压电、介电性能,最后展望了(K,Na)NbO3基无铅压电陶瓷的掺杂改性及晶粒定向技术的研究趋势.  相似文献   

3.
研究了0.94Bi0.5Na0.5TiO3-0.06BaTiO3[记为BNT-6BT]无铅压电陶瓷的预烧温度对陶瓷粉体相结构的影响,并在低温合成了BNT-6BT陶瓷粉体,利用这些粉体,采用传统固相烧结工艺,制备了BNT-6BT无铅压电陶瓷;研究了不同预烧温度对BNT-6BT压电陶瓷压电性能、介电和铁电性能的影响。结果表明BNT-6BT陶瓷粉体可以在600℃合成,与通常在900℃合成相比,大大降低了BNT-6BT陶瓷粉体的预烧温度;采用传统的陶瓷固相烧结工艺,利用在600℃合成的粉体所制备的压电陶瓷,其电学性能有所提高:密度ρ=5.87g/cm3,压电常数d33=141pC/N,平面机电耦合系数kp=0.30,机械品质因数Qm=141,居里温度TC=278℃,去极化温度Td=132℃,相对介电常数εr=1643,自发极化强度Pr=23μC/cm2和矫顽场Ec=32kV/cm。  相似文献   

4.
随着人类社会可持续发展战略的全面实施.(K,Na)NbO3基无铅压电陶瓷以其优越的压电性能和较高的居里温度受到人们的广泛关注.分析并评述了其国内外的研究及应用近况,(K,Na)NbO3基无铅压电陶瓷在改性方面取得了较大的进展,但总体上还不能与铅基体系相媲美.因此,(K,Na)NbO3基体系的性能和应用要达到铅基压电陶瓷的水平还需进行大量的研发工作.  相似文献   

5.
用传统固相烧结工艺制备Li0.06(Na0.5K0.5)0.94NbO3+0.8mol%CuO(LNKN-Cu0.8)无铅压电陶瓷。研究烧结温度对LNKN-Cu0.8无铅压电陶瓷致密度、相结构、微观结构及电学性能的影响。结果发现致密度随烧结温度的升高先增大后降低,在1020℃烧结时达到最大值95%。在所研究的烧结温度范围内,陶瓷都生成了单一钙钛矿结构。虽然没有发现正交和四方两相共存的准同型相界,但由于致密度和微观形貌的影响,在1020℃烧结时,陶瓷的压电性能达到最优值:d33=196pC/N。  相似文献   

6.
简述了水热法在国内外的发展现状,重点介绍了目前水热法制备BaTiO3、(K1-xNax)NbO3、Na0.5Bi0.5-TiO3以及Bi4Ti3O12等4种无铅压电陶瓷粉体的工艺过程,及其在制备4种粉体过程中对粉体尺寸、形貌的控制和独特的优势,同时简要评述了近年来微波水热法制备无铅压电陶瓷粉体的新工艺进展,指出水热法在制备无铅压电陶瓷方面具有一定的优势,可以制备出纯度和结晶性高、颗粒分布均匀、尺寸和形貌可控的高性能简单化合物无铅压电陶瓷粉体。下一步研究的重点和难点为合成组分可控的复杂化合物,为真正实现压电陶瓷和器件的无铅化革命作贡献。  相似文献   

7.
一种改性铌酸盐系无铅压电陶瓷的合成与特性研究   总被引:1,自引:0,他引:1  
K0.5Na0.5NbO3(KNN)系铌酸盐是一类可能替代铅基压电陶瓷的无铅压电陶瓷.利用Ta和Sb掺杂或者取代KNN中的相关离子,在陶瓷的准同型相界(MPB)处显现出高的压电和介电性能.利用传统技术制作出一种新的致密度较高的无铅压电陶瓷(1-x)(K0.5Na0.5)(Nb0.96Sb0.04)O3-xLiTaO3(简记为KNNS-LT).所有的组分在MPB处都存在纯的钙钛矿结构,主要压电性能在MPB处达极大值,其机电耦合系数kp为40%,压电常数d33为225pC/N,居里温度Tc为355℃.  相似文献   

8.
采用传统陶瓷烧结工艺制备了(1-x)(K0.5Na0.5)NbO3-xLiNbO3无铅压电陶瓷,研究了陶瓷的结构、烧结特性及电性能特征.制备的(K0.5Na0.5)NbO3-LiNbO3陶瓷为单一的钙钦矿结构,室温下其相结构随LiNbO3含量增加逐渐由正交相向四方相转变,显微结构也由于LiNbO3含量的不同而表现出很大差异.与(K0.5Na0.5)NbO3陶瓷相比,(K0.5Na0.5)NbO3-LiNbO3陶瓷的烧结温度降低,烧结特性得到改善.(K0.5Na0.5)NbO3-LiNbO3陶瓷表现出优越的压电性能,其中0.94(K0.5Na0.5)NbO3—0.06LiNbO3(x=0.06)陶瓷的压电常数d33达到205pC/N,机电耦合系数kp为40.3%,kt达到49.8%.  相似文献   

9.
采用传统陶瓷烧结工艺制备了(K0.5Na0.5)0.94-2xLi0.06SrxNb0.98Sb0.02O3无铅压电陶瓷,研究了陶瓷的结构、烧结特性及电性能特征.研究结果表明:制备的KNLSN-Srx陶瓷为单一的具有四方相的钙钛矿结构,SEM照片中可以看出材料的平均晶粒尺寸随着Sr掺入量的增加逐渐变大,陶瓷的烧结温度随Sr掺入量的增加而升高,Li,Sr和Sb掺杂(K0.5Na0.5)NbO3后,材料的压电系数d33、平面机电耦合系数kp得到提高,同时介电损耗tanδ和机械品质因子Qm降低,Sr掺入量在2mol%时各项性能最佳(d33=130pC/N,kp=34.5%,tanδ=4.2%).  相似文献   

10.
采用传统工艺制备了CuO掺杂的无铅压电陶瓷(Na0.66K0.34)NbO3,研究了CuO掺杂对其压电、介电、铁电等性质的影响。实验结果显示,CuO掺杂促进了晶粒生长,降低了样品的烧结温度,适量掺杂能够显著提高陶瓷样品的密度。当掺杂量为0.5%(摩尔分数)时,样品的密度为4.26g/cm3,品质因子Qm提高到400,介电损耗tanδ降低至0.8%。实验结果还显示,CuO掺杂使得陶瓷变硬,起到硬性添加剂的作用。随着CuO掺杂量的增加,样品的居里点(TC)、正交-四方相变温度(TT-O)、压电常数d33以及机电耦合系数kp均明显降低,而矫顽场显著增加。对于不掺杂的(Na0.66K0.34)NbO3陶瓷,其d33高达107pC/N,该陶瓷优异的压电性能表明,除了具有准同型相界结构的(Na0.5K0.5)NbO3外,(Na0.66K0.34)NbO3也是一种具有研究潜力的无铅压电陶瓷组分。  相似文献   

11.
(Na0.5K0.5)NbO3基无铅压电陶瓷的研究   总被引:3,自引:0,他引:3  
由于钙钛矿结构无铅压电陶瓷具有高的压电性能,已成为无铅压电陶瓷研究的热点.本文综述了钙钛矿结构无铅压电陶瓷(Na0.5K0.5)NbO3的研究进展和趋势.重点从添加第二组元、添加助烧剂、取代改性和制备方法四个方面,归纳和分析了(Na0.5K0.5)NbO3基无铅压电陶瓷的研究开发进展,并对(Na0.5K0.5)NbO3基无铅压电陶瓷今后的研究和发展提出一些建议.  相似文献   

12.
基于对人类生存环境的保护和发展环境友好型材料与电子产品的要求,铌酸钾钠(K0.5Na0.5NbO3,简写为KNN)基无铅压电陶瓷由于其具有优越的电学性能和较高的居里温度而成为目前世界范围内压电铁电材料研究的热点之一。材料制备工艺技术在材料科学技术中占有极其重要的地位。结合国际无铅压电陶瓷的研究情况,综述了近年来铌酸钾钠基无铅压电陶瓷在粉体制备、陶瓷烧结以及陶瓷织构化等制备工艺技术上研究的新进展并展望了其发展趋势。  相似文献   

13.
采用多层膜工艺制备了0.84(K0.48Na0.52)NbO3-0.16K0.56Li0.38NbO2.97无铅压电陶瓷,研究了不同烧结温度和保温时间对陶瓷的密度、物相、微观形貌以及介电和压电性能的影响。结果表明,所有烧结条件下得到的陶瓷都是钙钛矿结构和少量钨青铜结构的混合相,而且室温下陶瓷都处于多型相变区域。1050℃烧结8 min得到的陶瓷断面晶粒均匀,相对密度达到95%以上,并且获得最优的介电和压电性能:介电常数为εr=618,介电损耗为tanδ=0.03,压电常数为d33=112 pC/N。与传统制备工艺相比,多层膜工艺大大降低了烧结温度,缩短了烧结时间,有效地抑制了K、Na的挥发。  相似文献   

14.
采用固相反应方法制备Bi0.5(Na0.8K0.2-x Lix)0.5TiO3无铅压电陶瓷。研究该体系陶瓷的组成变化及烧结工艺对压电陶瓷的相组成、显微结构及电性能的影响。结果表明,混合原料的平均粒径在2μm左右,粒度呈正态分布。热分析确定了混合原料的合成温度为900℃。XRD分析表明,900℃预烧温度下,合成粉体为ABO3的钙钛矿结构,且为铁电四方相结构。SEM表明,组成在x=0.06,烧结温度为1 160℃时,能够获得烧结良好且致密度较高的陶瓷,该组成的陶瓷的电性能具有最佳值,εT33/ε0=1 160、tanδ=0.029、d33=195pC/N、kp=0.407。  相似文献   

15.
采用传统的固态反应法制备了(K0.47Na0.47 Li0.06 )1-x(Ba0.5Sr0.5)xNbO3无铅压电陶瓷,研究了Ba,Sr掺杂对K0.47Na0.47Li0.06NbO3陶瓷的晶体结构、电畴结构、介电及压电性能的影响.随着Ba,Sr掺杂量的增加,陶瓷样品逐渐由正交相向四方相转变,同时居里温度(Tc)降低,剩余极化率(Pr)、矫顽场(Ec)、介电常数(εr)增加;压电常数(d33)、机电耦合系数(kp)先增加后减小.x=0.5%时陶瓷的压电常数d33达到221 pC/N,机电耦合系数kp为43.1%.  相似文献   

16.
使用传统陶瓷烧结工艺制备了(Na0.55K0.45)1-xLixNb1-xSbxO3体系无铅压电陶瓷中偏离两相共存区的0.97(Na0.55K0.45)NbO3-0.03LiSbO3(简记为97KNN-3LS)陶瓷,分析了在不同烧结温度下其结构与电学性能.研究结果表明,当在适当的烧结温度时,该组分陶瓷具有良好的压电与铁电性能,其中,压电常数d33=166pC/N,平面机电耦合系数κP=46.7%,动态电阻R1=63Ω.该体系陶瓷在常温附近具有较高的κP与较低的R1,是一种很有应用前景的无铅压电陶瓷.  相似文献   

17.
KTa0.6Nb0.4O3粉体溶剂热和水热法合成的对比研究   总被引:1,自引:0,他引:1  
以Nb2O5和Ta2O5为前驱反应物,KOH为矿化剂,采用水热法和溶剂热法两种合成工艺制备了KTa1-xNbxO3(KTN)陶瓷粉体.实验结果表明,反应溶剂(水/异丙醇)和矿化剂KOH的摩尔浓度是影响KTN粉体结构和形貌的关键因素.采用水热工艺制备的KTN粉体,当KOH浓度达到3mol/L、反应温度为523K、反应时间8h时,开始出现以焦绿石结构为主的KTN粉体;随着KOH的浓度和反应温度的增加,粉体中的钙钛矿结构成分随之增加,而焦绿石结构则逐渐减少,但始终难以完全消除.采用溶剂热法,在KOH浓度1-2mol/L、反应温度523K、反应时间8h的条件下,合成了立方相钙钛矿结构KTa0.6Nb0.4O3陶瓷粉体,KTN晶粒形状呈规则的立方体,尺寸约为30-50nm;最后对溶剂热法合成纳米粉体的机理进行了分析讨论.  相似文献   

18.
(Na,K)0.5Bi0.5TiO3无铅压电陶瓷的结构与性能研究   总被引:6,自引:0,他引:6  
研究了K0.5Bi0.5TiO3(KBT)含量对Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3(BNKT)无铅压电陶瓷的显微组织结构及压电性能的影响规律,结果表明随KBT含量增加,BNKT无铅压电陶瓷的晶胞参数增大,密度减小,晶粒尺寸减小,居里温度从326℃升高到360℃,压电常数、介电常数和介电损耗增加,机械品质因数下降;KBT含量为0.15mol的(Na0.85K0.15)0.5Bi0.5TiO3无铅压电陶瓷位于准同型相界处,具有较佳的压电性能.  相似文献   

19.
将柠檬酸法与固相合成法有效结合,制备出钙钛矿结构的(K1/2Na1/2)NbO3(KNN)无铅压电陶瓷.分析表明,利用柠檬酸法合成铌酸钾钠粉体较为适宜的温度为550℃;制备铌酸钾钠无铅压电陶瓷的较好温度为1100℃,其居里温度为415℃,压电常数为58×10^-12C/N.  相似文献   

20.
以NaCl-KCl熔盐法制备出了片状的Bi4Ti3O12微晶模板,选用此模板分别采用干法和湿法流延工艺结合RTGG技术制备了(Na0.84K0.16)0.5Bi0.5TiO3无铅压电织构陶瓷。研究了不同工艺条件下获得的织构陶瓷烧结行为、织构度、显微组织结构和电性能的变化规律。结果表明,(Na0.84K0.16)0.5Bi0.5TiO3织构陶瓷的烧成温度范围只有10~20℃,其介电性能、压电性能呈现明显的各向异性,沿垂直于流延方向织构陶瓷的各种电学性能均明显优于平行于流延方向的电学性能,两种流延方法在1150℃烧结所得的(Na0.84K0.16)0.5Bi0.5TiO3织构陶瓷在显微组织结构和电性能方面均表现出最强的各向异性,该织构陶瓷的压电常数d33=134pC/N。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号