首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This work proposes a separable reversible data hiding scheme in encrypted images based on pixel value ordering (PVO). After the original image is encrypted using homomorphism encryption by the content owner, the data hider embeds the secret data in encrypted domain. The PVO strategy realizes hiding data in each block. Additive homomorphism guarantees the performance of PVO in encrypted domain is close to that in plain domain. Besides, the homomorphism encryption does not cause data expansion, and the payload can be further improved. With the watermarked encrypted image, if the receiver has only the data hiding key, he can extract the additional data. If the receiver has only the encryption key, he can obtain a decrypted image similar to the original one. If the receiver has both the data hiding key and the encryption key, he can extract the additional data without any error and recover the original image losslessly.  相似文献   

2.
In this paper a general framework to adopt different predictors for reversible data hiding in the encrypted image is presented. Employing linear regression, we propose innovative predictors that contribute more significantly to accomplish more payload than conventional ones. Reserving room before encryption (RRBE) is designated in the proposed scheme making possible to attain high embedding capacity. In RRBE procedure, pre-processing is allowed before image encryption. In our scheme, pre-processing comprises of three main steps: computing prediction-errors, blocking and labeling of the errors. By blocking, we obviate the need for lossless compression to when a content owner is not enthusiastic. Lossless compression is employed in recent state of the art schemes to improve payload. We surpass the prior arts exploiting proper predictors, more efficient labeling procedure and blocking of the prediction-errors.  相似文献   

3.
In this paper, we propose a new reversible data hiding method in encrypted images. Due to spatial correlation, there is a large probability that the adjacent pixels of the image have small differences, which is especially obvious on the high four most significant bits (high nibbles) of the pixels. If the high nibble of each pixel is regarded as a 4-bit value, the differences between the high nibbles of the adjacent pixels are mostly concentrated in a small range. Based on this fact, Huffman coding was used to encode all the differences between the high nibbles of the adjacent pixels in order to compress the four most significant bit (MSB) planes efficiently and create a large-capacity room. After creating room, a stream cipher is used to encrypt the image, and the room is reserved in the encrypted image for data hiding without losing information. The experimental results showed that the proposed method can achieve a larger embedding rate and better visual quality of the marked decrypted image than other related methods.  相似文献   

4.
This paper proposes a new high-capacity reversible data hiding scheme in encrypted images. The content owner first divides the cover image into blocks. Then, the block permutation and the bitwise stream cipher processes are applied to encrypt the image. Upon receiving the encrypted image, the data hider analyzes the image blocks and adaptively decides an optimal block-type labeling strategy. Based on the adaptive block encoding, the image is compressed to vacate the spare room, and the secret data are encrypted and embedded into the spare space. According to the granted authority, the receiver can restore the cover image, extract the secret data, or do both. Experimental results show that the embedding capacity of the proposed scheme outperforms state-of-the-art schemes. In addition, security level and robustness of the proposed scheme are also investigated.  相似文献   

5.
Due to privacy and security concerns, the researches of reversible data hiding in encrypted images (RDHEI) have become increasingly important. Conventional schemes vacate the spare room after image encryption (VRAE) suffer from the low embedding rate, high error rate of data extraction, and imperfect image recovery. To address these issues, we propose a separable reversible data hiding scheme for encrypted images that utilizes a novel pixel rotation technique to embed data into fully encrypted images. The block complexities of four decrypted rotation states are considered when recovering image. To realize perfect image recovery, we further devise a lossless version (LPR-RDHEI). Experimental results demonstrate that the proposed PR-RDHEI scheme achieves an embedding rate of 0.4994 bpp on average and ensures lossless data extraction. Meanwhile, the proposed LPR-RDHEI scheme still has a 0.4494 bpp embedding rate on average. The embedding rates of our two schemes are significantly improved compared with state-of-the-arts.  相似文献   

6.
This paper proposes an improved method of reversible data hiding in encrypted images (RDH-EI). Three parties constitute the proposed system: the image owner, the remote server and the recipient. To preserve privacy, an image owner encrypts the original image using a stream cipher algorithm and uploads the ciphertext to a remote server. On server side, a data-hider is allowed to embed additional message into the encrypted image using a swapping/shifting based algorithm. After downloading the marked encrypted image from the server and implementing the decryption, a recipient can extract the hidden messages and losslessly recover the original image. Experimental results show that the proposed method achieves a larger payload than the related works. Meanwhile, a limitation in the related works that few bits can be embedded into the encrypted medical images is also eliminated in the proposed method.  相似文献   

7.
A novel ROI-based reversible data hiding scheme in encrypted medical images is proposed. Firstly, a content owner partitions an original medical image into the region of interest (ROI) and the region of noninterest (RONI), and then encrypts the image using an encryption key. A data-hider concatenates the least significant bits (LSB) of the encrypted ROI and Electronic Patient Record (EPR), and then embeds the concatenated data into the encrypted image by LSB substitution algorithm. With the encrypted medical image containing the embedded data, the receiver can extract the embedded data with the data-hiding key; if the receiver has the encryption key, a medical image similar to the original image can be obtained by directly decrypting the encrypted medical image; if the receiver has both the data-hiding key and the encryption key, the embedded data can be extracted without any error and ROI can be losslessly recovered after extracting the embedded data.  相似文献   

8.
Reversible data hiding in encrypted images is an effective technique to embed information in encrypted domain, without knowing the original content of the image or the encryption key. In this paper, a high-capacity reversible data hiding scheme for encrypted images based on MSB (most significant bit) prediction is proposed. Since the prediction is not always accurate, it is necessary to identify the prediction error and store this information in the location map. The stream cipher is then used to encrypt the original image directly. During the data hiding phase, up to three MSBs of each available pixel in the encrypted image are substituted by the bits of the secret message. At the receiving end, the embedded data can be extracted without any errors and the original image can be perfectly reconstructed by utilizing MSB prediction. Experimental results show that the scheme can achieve higher embedding capacity than most related methods.  相似文献   

9.
Reversible data hiding for encrypted signals with prefect reconstruction of directly decrypted signals is introduced in this paper. Each unit in the original image is separated into three components by energy transfer equation, and each component is encrypted by Paillier homomorphic encryption. Additional bits are concealed into the encrypted image by manipulating the encrypted signals. Finally, the original image can be perfectly recovered when direct decryption is applied. The embedded bits are lossless extracted as well. Optimal visual quality and improved embedding rate are obtained by the proposed approach, since the value of the directly decrypted unit is the same as the original one. Experimental results and comparisons are demonstrated to illustrate the effectiveness and advantages of the proposed method. Moreover, the proposed method can be extended to deal with encoded multimedia, which further enriches the application scenarios.  相似文献   

10.
Applications on the cloud server have matured, and protecting the privacy of the content owner has attracted more attention. Privacy-Preserving Reversible data hiding (PP-RDH) is an efficient technique for embedding additional data into an encrypted image. In this paper, we propose a privacy-preserving reversible data hiding scheme using the quad-tree partition and Integer Wavelet Transform (IWT) techniques. Our scheme focuses on improving the embedding rate and quality of the recovered image when a 2 × 2-sized, block-based image encryption method is applied to ensure relative higher security. On this basis, the IWT technique transforms the encrypted image, and coefficients in three high frequency subbands are converted into 8-bit binary system. Then, the quad-tree partition technique encodes each 8 × 8-sized coefficient block, since there are many zeroes in the front bit planes. The experimental results indicated that our proposed scheme significantly improved the embedding rate, and guaranteed lossless image recovery and data extraction.  相似文献   

11.
In this paper, a reversible data hiding in encrypted images (RDHEI) method combining GCC (group classification encoding) and SIBRW containing sixteen image-based rearrangement ways is proposed to achieve high-capacity data embedding in encrypted images. Each way of SIBRW aims at bringing strongly-correlated bits of each higher bit-plane together by rearranging each higher bit-plane. For each higher bit-plane, the optimal way achieving the most concentrated aggregation performance is selected from SIBRW to rearrange this bit-plane, and then, GCC compresses the rearranged bit-plane in group-by-group manner. By making full use of strong-correlation between adjacent groups, GCC can compress not only consecutive several groups whose bits are valued 1 (or 0) but also a single group so that a large embedding space is provided. The encryption method including the bit-level XOR-encryption and scrambling operations enhances the security. The experimental results show that the proposed scheme can achieve large embedding capacity and high security.  相似文献   

12.
This paper proposes a novel scheme of reversible data hiding in encrypted images based on lossless compression of encrypted data. In encryption phase, a stream cipher is used to mask the original content. Then, a data hider compresses a part of encrypted data in the cipher-text image using LDPC code, and inserts the compressed data as well as the additional data into the part of encrypted data itself using efficient embedding method. Since the majority of encrypted data are kept unchanged, the quality of directly decrypted image is satisfactory. A receiver with the data-hiding key can successfully extract the additional data and the compressed data. By exploiting the compressed data and the side information provided by the unchanged data, the receiver can further recover the original plaintext image without any error. Experimental result shows that the proposed scheme significantly outperforms the previous approaches.  相似文献   

13.
Pixel-value-ordering (PVO) technique refers to the process of first ranking the pixels in a block and then modifying the maximum/minimum for reversible data hiding (RDH). This paper discusses the PVO embedding in two-dimensional (2D) space and utilizes the prediction-error pair within a block for data embedding. We focus on not only the exploitation of conventional PVO embedding but also its effective implementation in 2D form. The PVO embedding is extended into a 2D form by integrating the pairwise prediction-error expansion, and a reversible 2D mapping adapted to the special distribution of prediction-error pairs is proposed. Moreover, an adaptive mapping selection mechanism is proposed to treat separately rough and smooth prediction-error pairs to further optimize the embedding performance. Experimental results show that the proposed method outperforms the previous PVO-based methods.  相似文献   

14.
In recent years, the increasing requirements in cloud storage and cloud computing have made it necessary to encrypt digital images for privacy protection. Meanwhile, many reversible data hiding (RDH) algorithms in the encrypted domain have been proposed. However, most of these algorithms are for gray-level images, and the intrinsic cross-channel correlations of color images cannot be utilized to improve the embedding capacity. In this paper, we propose a novel data hiding method for encrypted color images. In the encryption stage, the homomorphic property of encryption is achieved by basic modular addition. During the data hiding process, the cross-channel correlations between R, G and B channels are generated in encrypted domain, and data hiding is performed by the difference histogram shifting. Analysis and experiments demonstrate that the proposed method is secure and the RDH performance is superior.  相似文献   

15.
Encrypted image-based reversible data hiding (EIRDH) is a well-known method allowing that (1) the image provider gives the data hider an encrypted image, (2) the data hider embeds the secret message into it to generate the encrypted image with the embedded secret message to the receiver, and (3) finally the receiver can extract the message and recover the original image without encryption. In the literature, the data hider and image provider must be specific parties who know the shared key with the receiver in traditional encrypted image-based reversible data hiding. In this paper, we propose an encrypted signal-based reversible data hiding (ESRDH) with public key cryptosystem, not only for images. The proposed scheme is secure based on Paillier homomorphic encryption. Finally, the experimental results show that the proposed scheme has much payload and high signal quality.  相似文献   

16.
In recent years, pixel value ordering based reversible data hiding has become a hot research topic for its high-fidelity. In this approach, only the maximum and minimum of pixel block are predicted and modified to embed data and the preservation of pixel values order guarantees the reversibility. So far, the optimal block size can only be exhaustively searched until Wang et al. propose the dynamic blocking strategy which enables the combination of two various-sized blocks. By further dividing flat block into four sub-blocks to retain larger embedding capacity, dynamic blocking can employ less high complexity blocks for a given embedding capacity. However, the lack of host image dependent automatic block classification mechanism still exposes the fact that their work is far from efficient and comprehensive. In this paper, to address this drawback and to better exploit image redundancy, a really efficient and more comprehensive blocking strategy namely multistage blocking is proposed. High efficiency lies in prediction accuracy matrix based thresholds determination, which enables infinitely extended multistage blocking in theory. The superiority of the proposed scheme is also experimentally verified.  相似文献   

17.
In this paper, a high-capacity reversible data hiding (RDH) scheme for encrypted images with separability is proposed. The image is first divided into non-overlapping blocks, and each block is encrypted with the same random value. The advantage is that the correlation between adjacent pixels can be preserved. Utilizing the preserved correlation, the prediction difference in encrypted domain is exactly the same as that of plaintext domain, so that the separability can be achieved. Without accessing the original image content, the data-hider can embed additional data into encrypted image through histogram shifting and difference expansion. At the receiving end, the embedded additional data and the original image can be recovered without any error in separable manner. Experimental results are presented to demonstrate the feasibility and efficiency of the proposed scheme.  相似文献   

18.
提出一种编码压缩和加密的图像可逆信息隐藏算 法。计算载体像素预测值与其像素值的差值, 对差值进行哈夫曼编码压缩,通过压缩数据和随机数据加密重构图像,得到载体数据。将哈 夫曼编码的码 表和秘密信息隐藏在载体数据中,实现信息隐藏。在载密数据中提取码表数据和秘密信息, 对加密压缩数 据进行解密,结合码表和预测方法恢复原始图像。实验结果表明,本文算法具有较大的隐藏 容量,不仅能 正确提取秘密信息,还能无损恢复原始图像。  相似文献   

19.
Adaptive reversible data hiding scheme based on integer transform   总被引:3,自引:0,他引:3  
In this paper, we present a new reversible data hiding algorithm based on integer transform and adaptive embedding. According to the image block type determined by the pre-estimated distortion, the parameter in integer transform is adaptively selected in different blocks. This allows embedding more data bits into smooth blocks while avoiding large distortion generated by noisy ones, and thus enables very high capacity with good image quality. For instance, by the proposed method, we can embed as high as 2.17 bits per pixel into Lena image with a reasonable PSNR of 20.71 dB. Experimental results demonstrate that the proposed method outperforms some state-of-the-art algorithms, especially for high capacity case.  相似文献   

20.
Crypto-space reversible image steganography has attracted increasing attention, given its ability to embed authentication information without revealing the image content. This paper presents an efficient reversible data hiding scheme for crypto-images: a block predictor is applied to compute prediction errors, then an adaptive block mapping algorithm is utilized to compress them whose amplitudes are within a small threshold, finally, this strategy can be applied in a multi-level manner to achieve a higher embedding capacity. Due to the correlations among adjacent pixels in the block, images can be sufficiently compressed to reserve abundant space for additional data embedding. Different from the prior arts, the compression code of the image is fully encrypted. Experimental results verify that the embedded data and original image can be perfectly recovered, the security is higher compared with the state-of-the-arts, and a significant improvement in the average embedding rate is achieved on two large-scale image datasets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号