首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 199 毫秒
1.
An antenna design with four band rejection characteristics for UWB application is demonstrated. The proposed unique UWB antenna has shape of an embedded ellipse at top of trapezoidal patch (named as ellipzoidal), 50 Ω impedance microstrip line feed and a truncated beveled ground plane. To realize four band stop characteristics, three inverted U-shaped and a single I-shaped slots each of half guided wavelength are utilized on radiating element. The fabricated antenna has dimensions of 27 mm × 36 mm × 1.6 mm. This four band notched ellipzoidal UWB antenna has measured frequency bandwidth 2.8–14 GHz for magnitude of S11 < −10 dB level. The measured ellipzoidal antenna exhibits four band rejection characteristics for magnitude of S11 > −10 dB at 3.55 GHz for WiMAX band (3.26–3.9 GHz), 4.55 GHz for ARN band (4.35–5.05 GHz), 5.7 GHz for WLAN band (5.5–6.65 GHz) and 8.8 GHz for ITU-8 band (7.95–9.35 GHz). The proposed ellipzoidal UWB antenna maintains omnidirectional radiation pattern, gain, linear phase response, <1 ns group delay, and transfer function in the whole UWB operating bandwidth except at notched frequency bands.  相似文献   

2.
This paper presents the integrated amateur band and ultra-wide band (UWB) monopole antenna with integrated multiple band–notched characteristics. It is designed for avoiding the potential interference of frequencies 3.99 GHz (3.83 GHz–4.34 GHz), 4.86 GHz (4.48 GHz–5.63 GHz), 7.20 GHz (6.10 GHz–7.55 GHz) and 8.0 GHz (7.62 GHz–8.47 GHz) with VSWR 4.9, 11.5, 6.4 and 5.3, respectively. Equivalent parallel resonant circuits have been presented for each band-notched frequencies of the antenna. Antenna operates in amateur band 1.2 GHz (1.05 GHz–1.3 GHz) and UWB band from 3.2 GHz–13.9 GHz. Different substrates are used to verify the working of the proposed antenna. Integrated GSM band from 0.6 GHz to 1.8 GHz can also be achieved by changing the radius of the radiating patch. Antenna gain varied from 1.4 dBi to 9.8 dBi. Measured results are presented to validate the antenna performances.  相似文献   

3.
一种新型的具有带阻特性的超宽带微带天线   总被引:1,自引:1,他引:0  
设计制作了一种新型的具有带阻特性的超宽带微带天线。天线采用50Ω共面波导馈电结构,辐射单元采用圆形金属贴片,在圆形贴片上开一个倒U形槽,实现了天线的带阻特性。测试结果表明:在频率段2.8-12.0 GHz内(除5.00-5.95 GHz外)天线驻波比小于2,且天线具有近似全向辐射的特性;而天线在频率段5.00-5.95 GHz内形成了阻带,从而有效阻隔了WLAN(5.150-5.825 GHz)频率段。该天线具有尺寸小,易于与微波电路集成等优点,可以用于超宽带系统。  相似文献   

4.
This article introduces a super wideband along with three notch bands circular patch monopole antenna. The design structure is applicable for microwave and high-speed wireless devices (2.19 to 25 GHz). In order to create a broad band, a ring dimension circular patch is used. To generate three notch bands, six symmetrical tiny cylinder stubs are introduced on the ground. These notch band frequencies can eliminate unwanted interference from various wireless frequencies, which mainly cover three notch bands: 5.5–7.3, 12.05–14.46, and 17.71–19.5 GHz. The steady radiation, super bandwidth, and stable gain properties expand when the ring patch and line feed are combined. It is excellent for many UWB applications because of its compact size (39 × 29 mm 2) and large bandwidth (166.97% fractional bandwidth). This model employs various size reduction and matching approaches to get a better response. The mechanisms of these structures are identified, and overall performance is compared with parametric analysis, tables, and figure.  相似文献   

5.
根据短距离无线电通信系统对超宽带天线的要求,设计制作了矩形宽缝隙超宽带(UWB)天线,并通过加载λg/4开路枝节的方法实现了超宽带天线的带阻特性,分析了天线参数对其辐射特性的影响。仿真及实验结果表明:该天线满足短距离无线电通信系统对UWB天线的要求,实现了4.5~6 GHz的带阻特性,具有稳定的增益,良好的波形保真特性。该天线尺寸小、成本低且易于集成,可以作为短距离无线通信系统的收发天线。  相似文献   

6.
An electromagnetic band gap (EBG) coupled miniaturized tri-notched printed ultra-wideband (UWB) monopole microstrip antenna having dimensions of 22 mm × 26 mm × 1.6 mm loaded with a slot in radiating patch and a parasitic strip in the ground plane has been presented. The proposed structure incorporates a square-shaped metallic radiating patch with a square EBG structure adjacent to the microstrip feed line, a U-shaped meandered slot over the radiating element, and a U-shaped parasitic resonator at the ground plane beneath the radiating element, to reject the C-band satellite downlink (3.7 to 4.2 GHz), WLAN frequency band (5.15 to 5.85 GHz), and X-band satellite downlink (7.25 to 7.75 GHz) frequency bands, respectively. The designed antenna operates in the frequency range from 3 to 11.1 GHz, with an impedance bandwidth of 8.1 GHz and a percentage bandwidth of 114%. Modification steps incorporating into the reference antenna to achieve the desired design objectives have been discussed, along with parametric studies. The proposed design has been simulated using Ansys HFSS, and measurement has been taken using standard measurement technique and compared with the simulated results.  相似文献   

7.
This article represents a microstrip line–fed novel circular monopole antenna with ultra‐wideband (UWB) characteristics. The compact antenna provides reconfigurable notches at WLAN (5.2/5.8 GHz) and Wi‐MAX (5.5 GHz) frequency bands. The band rejection is achieved by etching an open‐ended L‐shaped slot in the ground plane, which effectively mitigates the interference between WLAN, Wi‐MAX, and UWB systems with an effective patch area of 36.26%. The proposed antenna operates from 3.05 to 12.11 GHz with VSWR 2 except at stopband (3.89‐5.93 GHz) to filter the WLAN and Wi‐MAX signals. The simulated return loss, gain, and radiation pattern of the proposed antenna has been experimentally verified with the fabricated one which holds a good agreement.  相似文献   

8.
提出了一种具有陷波特性的UWB天线.该天线用开槽的金属片作为辐射单元,并通过对地板的开槽处理减小了天线的尺寸.结合HFSS仿真工具,对天线结构进行理论优化并通过大量仿真对天线尺寸进行调整;设计出一种基于FR4介质的尺寸为25*15*1mm3的天线模型,并设计模型进行加工测量.该天线的工作频带覆盖3.1~10.6 GHz,并避免了3.5-GHz WiMAX,和5.825-GHz WLAN频段,适于超宽带无线通信系统的应用.  相似文献   

9.
This article presents a small, low-profile planar microstrip antenna that is applicable for both WLAN and WiMAX applications. The goal of this paper is to design an antenna which can excite triple-band operation with appreciable impedance bandwidth to combine WLAN/WiMAX communication specifications simultaneously in one device. The designed antenna has a compact size of 10 × 26 mm2. The proposed antenna consists of an inverted U-shaped slot radiator and a defected ground plane. Overall the design method and parametric study found appropriate dimensions, which provides three distinct bands I from 2.40 to 2.52, II from 3.40 to 3.60 and III from 5.00 to 6.00 GHz that covers entire WLAN (2.4/5.2/5.8 GHz) and WiMAX (2.5/3.5/5.5) bands. Finally, a prototype antenna was fabricated and experimentally characterized to verify the design concept as well as to validate the simulation results. Thus the simulation results along with the measurements show that the antenna can simultaneously operate over WLAN and WiMAX frequency bands.  相似文献   

10.
A dual-band Ultra-wideband (UWB) bandpass microstrip filter with triangular dumbbell shaped defected ground structure (DB-DGS) for wireless local area network applications in DSRC band is proposed in this article. The proposed dual-band filter has center frequencies at 2.67 GHz and 4.68 GHz, return loss obtained is −33.40 dB and −16.55 dB respectively, wide bandwidth of 1.21 GHz (26%), pass band between 2.14 GHz and 6.44 GHz and high gain of 10.30 dB which makes it suitable for modern applications in dedicated short range communication operating in 5.8 GHz band. To further validate the design concept, a microstrip UWB filter is designed, fabricated and tested. Comparison is made among circular, square and triangular dumbbell shaped DGS on the basis of scattering parameters and bandwidth, in which triangular shaped DB-DGS outperforms the other two. Further, parametric analysis of triangular DB-DGS has been performed and comparison is made with filters of similar nature. Experimental results are in good agreement with simulations. The fabricated filter is compact in size, has low insertion loss, exhibits high selectivity and demonstrates excellent out of-band performance.  相似文献   

11.
Triple band-rejection MIMO/Diversity UWB antenna characteristics are described in this paper. Proposed antenna discards worldwide interoperability for microwave access WiMAX band from 3.3 to 3.6 GHz, wireless local area network WLAN band from 5 to 6 GHz and X-Band satellite downlink communication band from 7.1 to 7.9 GHz. Mushroom Electromagnetic Band Gap (EBG) structures helps to attain band notches in WiMAX and WLAN bands. Uniplanar plus shaped EBG structure is used for notch in X-band downlink satellite communication band. Decoupling strips and slotted ground plane are employed to develop the isolation among two closely spaced UWB monopoles. The individual monopoles are 90° angularly separated with stepped structure which helps to reduce mutual coupling and also contributes towards impedance matching by increasing current path length. Mutual coupling magnitude of more than 15 dB is found over whole UWB frequency range. The Envelope Correlation Coefficient is less than 0.02 over whole UWB frequency range.The variations in the notched frequency with the variations in mushroom EBG structure parameters are investigated.The antenna has been designed using FR-4 substrate and overall dimensions is (64 × 45 × 1.6) mm3.  相似文献   

12.
The proposed antenna is a small wideband monopole with wideband circular polarization using heterogeneous bidirectional recurrent neural network for both narrow and wide band applications (NWB-MAD-HBRNN). The electromagnetic structure is designed, fabricated, and simulated with 1 mm thickness on FR4 substrate material along dielectric constant 4.3. The proposed antenna includes 4.3–8.85 GHz for ultrawideband applications; it contains reconfigurable narrow band for L-band 1.27 GHz, LTE, and ultrawideband applications. To enhance the antenna impedance bandwidth (BW) along axial ratio bandwidth (ARBW), a slit is etched at the antenna patch, a rectangular stub is inserted into the ground plane, and semicircular stub is added to the top of antenna feed line. The better agreement is observed in the measured and simulated gain performance of 4.8 dB for LTE band applications. The proposed NWB-MAD-HBRNN design provides 13.50%, 18.91%, and 22.58% higher bandwidth and 18.36%, 20.38%, and 27.58% lower return loss than the existing designs, such as bio-inspired wideband antenna for wireless applications based on perturbation technique (BWA-WA-PA), a compact circularly polarized modified printed monopole antenna for wireless applications (CCP-MPMA-WA), and new multiband monopole antenna for certain broadband wireless applications along wireless personal communications (PA-MMA-BWA), respectively.  相似文献   

13.
提出一种新型的微带馈电准自补天线,其辐射贴片由矩形和扇形金属片构成,并在地板上刻与辐射元互补的缝,天线整体尺寸为25 mm×32 mm×1 mm,为进一步展宽带宽,在馈电点下方的地板上挖去一个矩形缺口。仿真结果表明:驻波比小于2的带宽覆盖3.04~11.00 GHz,在整个工作频段有良好的辐射方向图。通过在馈线上嵌入U型槽,实现了对WLAN频段的陷波,而通带内仍可保持稳定的增益。  相似文献   

14.
郭晨  刘策  庞锐 《现代电子技术》2012,35(19):85-88
在传统Vivaldi天线结构的基础上,设计了两种适用于混合材料介电常数测量的改进型渐变槽Vivaldi天线以及同轴馈电型对踵Vivaldi天线,并利用三维电磁仿真软件HFSS对这几种Vivaldi天线的性能进行优化分析。通过对不同结构Vivaldi天线的对比,分析结果可以看出这两种改进型渐变槽Vivaldi天线和同轴馈电型对踵Vivaldi天线在频段、带宽、驻波比等方面均达到超宽带介电常数测量系统的设计要求,可应用于测量混合材料的介电常数。  相似文献   

15.
In this paper two triple-band monopole antennas are proposed for portable wireless applications such as WiFi, WiMAX and WLAN. Two different geometrical structures are used for the radiating elements of these antennas, each printed on a low cost FR-4 substrate. Truncated metallic copper ground is used to attain optimum radiation pattern and better radiation efficiency. The frequency of the antennas is reconfigured using a lumped-element switch. The proposed antennas covers three frequency bands 2.45, 3.50 and 5.20 GHz depending upon the switching conditions. Both antennas works with an optimum gain (1.7–3.4 dB), bandwidth (6–35%), VSWR (<1.5) and radiation efficiency (85–90%). Due to its affordable size (1.6 × 35 × 53 mm3), the antennas can be used in modern and portable communication devices such as laptops, iPads and mobile phones. The prototype of the antennas are fabricated and the measurements and simulations are found in close agreement.  相似文献   

16.
提出了一种具有陷波特性的新型超宽带Vivaldi天线。采用双Y巴伦实现了微带-槽线过渡,利用多阶阻抗变换器解决了宽带阻抗匹配问题。通过在微带线上添加狭缝,实现了对WLAN应用频段(5.125~5.825 GHz)的隔离,使该天线具有陷波特性。在仿真设计的基础上制作了实验模型,并对其进行了测量。实测结果表明:在超宽带UWB(Ultra Wide-Band)应用频带(3.1~10.6 GHz)范围内,除隔离频带(5.1~6.0 GHz)以外,该天线的驻波比VSWR≤2,辐射方向图定向性较好,且交叉极化较低,从而证明了该天线设计的实用性。  相似文献   

17.
A wide band Microstrip antenna is proposed for Ku band applications with defected ground structure. A circular shape defect is integrated in the ground plane. A novel equivalent circuit model is proposed for Microstrip patch antenna with defected ground structure. Accurate design equations are presented for the wideband Microstrip antenna and theoretical analysis is done for the proposed structure. The proposed antenna has an impedance bandwidth of 56.67% ranging from 9.8 GHz to 17.55 GHz, which covers Ku-band and partially X-band. The antenna shows good radiation characteristics within the entire band, and has a gain ranging from 5 dBi to 12.08 dBi. Minimum isolation between co-polar and cross-polarization level of 20 dB and 15 dB is achieved in H-plane and E-plane respectively. The simulation of the proposed antenna is done on HFSS v.14, and measured results of fabricated antenna are in good agreement with the theoretical and simulated results.  相似文献   

18.
为了避免现存的一些窄带通信系统对超宽带天线的干扰,提出了一种具有双陷波特性的超宽带天线结构。由于采用了渐变式阶梯阻抗匹配结构作为超宽带基础天线的馈电,使天线具有了宽阻抗匹配能力。通过在基础天线背面附加双偏T寄生单元和在辐射贴片上开窗的联合方法,实现了超宽带天线的双陷波特性。天线电流分布结果可以完全反映出在陷波频率下两种方法的谐振抑制作用,而且实验结果表明该结构的天线对 WLAN(5.15~5.825 GHz) 和WiMAX(3.4~3.69 GHz)频段的信号起到了有效的抑制作用,同时在工作频段内表现出较好的全向辐射特性。  相似文献   

19.
A novel implantable coplanar waveguide (CPW) fed crossed bowtie antenna is proposed for short-range biomedical applications. The antenna is designed to resonate at 2.45 GHz, one of the industrial-scientific-medical (ISM) bands. It is investigated by use of the method of moments design equations and its simulation software (IE3D version 15). The size of the antenna is 371.8 mm3 (26 mm × 22 mm × 0.65 mm). The simulated and analyzed return losses are −23 and −25 dB at the resonant frequency of 2.45 GHz. We have analyzed some more performances of the proposed antenna and the results show that the proposed antenna is a perfect candidate for implantation. The proposed antenna has substantial merits like low profile, miniaturization, lower return loss and better impedance matching with high gain over other implanted antennas.  相似文献   

20.
Ultra-wideband (UWB) disc monopole antenna with crescent shaped slot for double band-notched features is presented. Planned antenna discards worldwide interoperability for microwave access (WiMAX) band (3.3–3.6 GHz) and wireless local area network (WLAN) band (5–6 GHz). Defected ground compact electromagnetic band gap (DG-CEBG) designs are used to accomplish band notches in WiMAX and WLAN bands. Defected ground planes are utilised to achieve compactness in electromagnetic band gap (EBG) structures. The proposed WiMAX and WLAN DG-CEBG designs show a compactness of around 46% and 50%, respectively, over mushroom EBG structures. Parametric analyses of DG-CEBG design factors are carried out to control the notched frequencies. Stepwise notch transition from upper to lower frequencies is presented with incremental inductance augmentation. The proposed antenna is made-up on low-cost FR-4 substrate of complete extents as (42 × 50 × 1.6) mm3.Fabricated sample antenna shows excellent consistency in simulated and measured outcomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号