首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The performance of four Coriolis flow meters designed for use in hydrogen refuelling stations was evaluated with air and nitrogen by three members of the MetroHyVe JRP consortium; NEL, METAS and CESAME EXADEBIT.A wide range of conditions were tested overall, with gas flow rates ranging from (0.05–2) kg/min and pressures ranging from (20–86) bar. The majority of tests were conducted at nominal pressures of either 20 bar or 40 bar, in order to match the density of hydrogen at 350 bar and 20 °C or 700 bar and −40 °C. For the conditions tested, pressure did not have a noticeable influence on meter performance.When the flow meters were operated at ambient temperatures and within the manufacturer's recommended flow rate ranges, errors were generally within ±1%. Errors within ±0.5% were achievable for the medium to high flow rates.The influence of temperature on meter performance was also studied, with testing under both stable and transient conditions and temperatures as low as −40 °C.When the tested flow meters were allowed sufficient time to reach thermal equilibrium with the incoming gas, temperature effects were limited. The magnitude and spread of errors increased, but errors within ±2% were achievable at moderate to high flow rates. Conversely, errors as high as 15% were observed in tests where logging began before temperatures stabilised and there was a large difference in temperature between the flow meter and the incoming gas.One of the flow meters tested with nitrogen was later installed in a hydrogen refuelling station and tested against the METAS Hydrogen Field Test Standard (HFTS). Under these conditions, errors ranged from 0.47% to 0.91%. Testing with nitrogen at the same flow rates yielded errors of −0.61% to −0.82%.  相似文献   

2.
Milli-, micro- and nano-flow calibrations are important in several areas of pharmaceutical, flow chemistry and health care applications where volumetric dosage or delivery at given flow rates are crucial for the process. After developing a facility for the micro-flow range, METAS has developed a facility for flow rates from 50 nL/min up to 400 mL/min. The continuous collection of the flowing water into a beaker on a balance without having droplet formation for a continuous increase of the weighing values is a challenge (dynamic gravimetric method). This technique is often used to determine the flow rate over several orders of magnitude. In this paper, we describe the newly developed METAS piston provers and focus on the water collection techniques used for the flow rate determination of very low flow rates going as low as 50 nL/min by means of the dynamic gravimetric method. One water collection technique is to immerse the outlet needle into the water in the beaker. To reduce evaporation either a saturated environment is created or a layer of oil is added on top of the water. Another water collection technique is applied at the METAS facilities, where the outlet needle is positioned just over glass filters on top of the beaker to collect the water by means of a constant water bridge obtained independently of the flow rate. These two techniques are investigated for comparing the stability of the flow rate determination and the influence of the capillary forces acting due to the water or water-oil surface on the outlet needle and on the water bridge between the outlet needle and glass filters. The technique applied at METAS with the water bridge between outlet needle and glass filter reveals to be more stable for the flow rate determination and corrections due to capillary forces acting on the outlet needle can be neglected compared to the water collection technique with the immersed needle.  相似文献   

3.
Of all the alternatives to hydrocarbon fuels, hydrogen offers the greatest long-term potential to radically reduce the many problems inherent in fuel used for transportation. Hydrogen vehicles have zero tailpipe emissions and are very efficient. If the hydrogen is made from renewable sources, such as nuclear power or fossil sources with carbon emissions captured and sequestered, hydrogen use on a global scale would produce almost zero greenhouse gas emissions and greatly reduce air pollutant emissions.The aim of this work is to realise a traceability chain for hydrogen flow metering in the range typical for fuelling applications in a wide pressure range, with pressures up to 875 bar (for Hydrogen Refuelling Station - HRS with Nominal Working Pressure of 700 bar) and temperature changes from −40 °C (pre-cooling) to 85 °C (maximum allowed vehicle tank temperature) in accordance with the worldwide accepted standard SAE J2601. Several HRS have been tested in Europe (France, Netherlands and Germany) and the results show a good repeatability for all tests. This demonstrates that the testing equipment works well in real conditions. Depending on the installation configuration, some systematic errors have been detected and explained. Errors observed for Configuration 1 stations can be explained by pressure differences at the beginning and end of fueling, in the piping between the Coriolis Flow Meter (CFM) and the dispenser: the longer the distance, the bigger the errors. For Configuration 2, where this distance is very short, the error is negligible.  相似文献   

4.
Phase noise is an important parameter to characterise the frequency stability of oscillators and synthesised signal generators. Accurate measurement of phase noise is required for various applications in radar, communication and navigation systems. A single-channel phase-detector based phase noise measurement system is described. The system’s measurement errors and uncertainties have been analysed in details. The expanded uncertainty is about 2.7 dB for calibrating phase noise of a signal generator at 0.001–1.6 GHz for frequency offsets from 1 Hz to 100 kHz. The uncertainty budget for measuring a signal generator’s phase noise at 640 MHz is also presented.  相似文献   

5.
Very low flow calibrations are important in several areas of pharmaceutical, microfluidic and health care applications where volumetric dosage or delivery at given flow rates are crucial for the process. Not only constant and steady flow rates are commonly used in the health sector, but also pulsed flow rates consisting of constant delivered volumes at given time intervals. One known application is the delivery of Insulin with tethered or patch pumps. These constant volumes can be in the order of several tens or hundreds of nanoliters. As the delivery times can vary up to several minutes, it is not appropriate to determine an average flow rate of the delivered volume. It is more advisable to determine the average volume and the average time interval of delivery.The METAS Microflow facility has been upgraded to perform measurements with insulin pumps delivering a volume of 500 nL at a given time interval of several minutes. The updated design and new aspects of the discontinuous volume collection from the tethered or patch pumps are discussed in this paper. First calibration results of insulin pumps are also presented.  相似文献   

6.
The calibration facility with the multi-nozzle calibrator was developed for the calibration of flow meters to be used with high-pressure, high-flow-rate hydrogen gas. The critical nozzles installed in the multi-nozzle calibrator were calibrated with traceability to the national standard. The relative standard uncertainty of the mass flow rates produced from the calibration facility is 0.09% when the flow rate is between 150 g/min and 550 g/min. In this study, the Coriolis flow meter was calibrated for a pressure range of 15–35 MPa. The relative standard uncertainty of the flow rates obtained from the Coriolis flow meter was 0.44% for the case of the worst fluctuations in the output of the flow meter; based on the calibration curve, this is 0.91%. The present result shows that there is a maximum 3% difference between the output of the Coriolis flow meter and the mass flow rates of the multi-nozzle calibrator, even though the Coriolis flow meter was calibrated using water. Therefore, for the development of a calibration facility that can calibrate a flow meter under the same conditions as those encountered in actual use, it will be important to develop a new flow meter.  相似文献   

7.
A new test facility has been constructed for the National Metrology Institute of Japan (NMIJ) and the National Institute of Advanced Industrial Science and Technology (AIST) for calibration of feedwater flowmeters used in nuclear power stations at Reynolds numbers of up to 18 million. This very large Reynolds number is achieved in a 600 mm pipe at a flowrate of 3.33  m3/s (12,000  m3/h) and a water temperature of 70  °C. This calibration facility consists of a circulation loop with four pumps and four reference flowmeter sets, a prover system, a heating and cooling unit, and other components. The expanded uncertainty of this facility is 0.077%. The present paper describes, in detail, the new facility, the calibration method of the reference flowmeter, experiments for flow field, uncertainty estimation, and the results of an example calibration.  相似文献   

8.
In the framework of the ongoing EMPIR JRP 16ENG01 “Metrology for Hydrogen Vehicles” a main task is to investigate the influence of pressure on the measurement accuracy of Coriolis Mass Flow Meters (CFM) used at Hydrogen Refueling Stations (HRS). At a HRS hydrogen is transferred at very high and changing pressures with simultaneously varying flow rates and temperatures. It is clearly very difficult for CFMs to achieve the current legal requirements with respect to mass flow measurement accuracy at these measurement conditions. As a result of the very dynamic filling process it was observed that the accuracy of mass flow measurement at different pressure ranges is not sufficient. At higher pressures it was found that particularly short refueling times cause significant measurement deviations. On this background it may be concluded that pressure has a great impact on the accuracy of mass flow measurement. To gain a deeper understanding of this matter RISE has built a unique high-pressure test facility. With the aid of this newly developed test rig it is possible to calibrate CFMs over a wide pressure and flow range with water or base oils as test medium. The test rig allows calibration measurements under the conditions prevailing at a 70 MPa HRS regarding mass flows (up to 3.6 kg min−1) and pressures (up to 87.5 MPa).  相似文献   

9.
Electronic levels are designated for the precise measurement of inclination angles within the range of ±3 mm/m. They are very often used for checking the straightness of machine tool guides as well as the flatness of different kinds of machine tool tables and surface plates. Typical resolution of such instruments is 1 μm/m. Electronic levels are calibrated by using very precise angle generators. One such generator is a sine bar. Sine bars are cheap and enable fast and simple calibrations. Commercial sine bars however are not precise enough. We, therefore, decided to design a special sine bar, which would be able to generate angles within an uncertainty of 1 μm/m. This sine bar was designed by the laboratory staff and manufactured in our workroom. We have also created a calibration procedure, which has already been accredited. Uncertainty analysis, including experimental measurements, shows that the planned uncertainty has been reached. The sine bar design, calibration procedure and uncertainty evaluation are presented in this article.  相似文献   

10.
In the medical sector, various imaging methodologies or modalities (e.g. MRI, PET, CT) are used to assess the health of various parts of the bodies of patients. One such investigation is the blood flow or perfusion of the heart muscle, expressed as the (blood) flow rate normalized by the mass of the volume of interest. Currently there is no physical flow standard for the validation of quantitative perfusion measurements. This need has been addressed in the EMPIR 15HLT05 PerfusImaging project. A phantom simulating the heart muscle has been developed with the capability that it can reproducibly generate a flow profile with individual flow rates known with a relative uncertainty of about 10% (k = 2) and total flow rate known with an uncertainty of 1% (k = 2). An overview of the phantom and its validation is given. Next, a new analysis method is presented to analyse the sequence of images which are acquired when using a standard dynamic imaging protocol. It is concluded that the new, alternative approach gives results comparable to the standard analysis method.  相似文献   

11.
We have developed a nanoreactor, sample holder and gas system for in-situ transmission electron microscopy (TEM) of hydrogen storage materials up to at least 4.5 bar. The MEMS-based nanoreactor has a microheater, two electron-transparent windows and a gas inlet and outlet. The holder contains various O-rings to have leak-tight connections with the nanoreactor. The system was tested with the (de)hydrogenation of Pd at pressures up to 4.5 bar. The Pd film consisted of islands being 15 nm thick and 50-500 nm wide. In electron diffraction mode we observed reproducibly a crystal lattice expansion and shrinkage owing to hydrogenation and dehydrogenation, respectively. In selected-area electron diffraction and bright/dark-field modes the (de)hydrogenation of individual Pd particles was followed. Some Pd islands are consistently hydrogenated faster than others. When thermally cycled, thermal hysteresis of about 10-16 °C between hydrogen absorption and desorption was observed for hydrogen pressures of 0.5-4.5 bar. Experiments at 0.8 bar and 3.2 bar showed that the (de)hydrogenation temperature is not affected by the electron beam. This result shows that this is a fast method to investigate hydrogen storage materials with information at the nanometer scale.  相似文献   

12.
We report on the design, construction and evaluation of a low-cost digital environmental monitoring system based on a popular micro-computer board and mass market digital sensors. The system is based around the use of open source software and readily available digital sensors, providing key parameters required for environmentally-controlled calibration laboratories: air temperature, pressure and humidity. Each system logs data at set intervals with front-panel display, web page graphical display and email alerting when exceeding set tolerances. The sensors have been calibrated at the National Physical Laboratory using standards traceable to the SI. Long term stability of the system is estimated and in addition to monitoring of laboratory environments for regulatory purposes, the systems can also be used to provide on-demand values for local refractive index with an expanded (k = 2) uncertainty of 1.1 × 10−7 as required for many optical-based measuring systems.  相似文献   

13.
This paper describes a primary standard for liquid micro-flow, which covers the flow rate range from 1 ml/min down to 100 nl/min with uncertainties in the range from 0.1% to 0.6% (coverage factor 95%). To realize stable flow rates, METAS applies the principle of generating flow by means of a constant pressure drop over a capillary tube according to the law of Hagen–Poiseuille. The constant pressure drop is mainly possible due to the fact that the relative pressure at the outlet needle remains constant as the outlet needle is positioned just above the beaker collecting the water. The special beaker and the adjustments for the weighing zone to control evaporation will be discussed in the paper as well as measurement results from flow sensors and flow generators, which highlight the repeatability and the reproducibility of the facility.  相似文献   

14.
The kinematic viscosity is a major physical property to be used in numerical, experimental and analytical work in all the related fields of fluid flow research. Its determination can be based on experiments with viscometer and on calculations for single or multi-species components, possibly through the use of mixture law and other intermediate parameters. Its experimental estimation for multi-species and/or supercritical hydrocarbon mixtures under high temperature and pressure remains quite absent. The novel approach proposed in this paper is based on fluid permeation through characterized porous media. The Darcian law or the Darcy–Forchheimer equation are used depending on the flow regime. First tests have been realized with pure gaseous nitrogen at ambient then high temperature (1200 K) for several varying pressures (up to 60 bar). The accuracy of the methods can be as low as 5% by comparison to National Institute of Standards and Technology data. The main source of uncertainty is found to be linked to the characteristics of sensors. The method has been applied to liquid dodecane (from 300 to 700 K and up to 60 bar) with the same order of accuracy before testing it on supercritical n-dodecane (658–700 K up to 60 bar) for which no validation data have been found. By comparisons with computations for multi-species mixture, even multi-phase, a reasonable agreement is found. The novel viscosity determination technique opens a new field of fluid characterization in extreme operating conditions.  相似文献   

15.
The paper presents the accuracy and precision associated with realization of primary standard of sound using the reciprocity method. An experimental determination of the front cavity volume on Universal Measuring Machine has lead to reaffirmation of measurement uncertainty in pressure sensitivity determination to 0.04–0.15 dB in frequency range 31.5 Hz to 25 kHz. The reduced measurement uncertainty has also been validated from the results of the recent APMP Key comparison and also by comparison to the manufacturer’s value for LS2P microphones. The use of optical method for measuring the front cavity volume has refined the measurement methodology followed with adaptation of a self reliant, traceable and systematic measurement procedure in comparison to the earlier use of nominal values for sensitivity fitting exercise conducted on MP.EXE program. Consequently, the measurement uncertainty associated with the calibration of working standard microphones, multifunction acoustic calibrator and A-weighted sound pressure level measurements is also reduced.  相似文献   

16.
Step height is widely used as one of the important nanometrological standards for the calibration of nanometrological instruments. In the calculation of step height, a method of determining a base straight line as a reference line is very important. In nanometrology, which is a field of dimensional metrology, an associated feature (Gaussian associated feature), such as a base straight line, is normally calculated from a measured dataset of a metrological instrument on a real feature using the least squares method. The reliability of a base straight line varies depending on the position and number of measured points for the line and the uncertainty in step height calibration also varies depending on the reliability of the base straight line. In this study, we carried the out step height measurement of micropatterned thin films (10, 7, 5, and 3 nm) using an atomic force microscope (AFM) equipped with a three-axis laser interferometer (nanometrological AFM) and evaluated the uncertainty in these measurements. From the uncertainty evaluation results, the uncertainty derived from the reliability of the parameters of the base straight line was one of the major sources of uncertainty when the measured points for the base straight line were varied. An expanded uncertainty (k = 2) of less than 0.4 nm was obtained. Furthermore, the reliable range of an associated base straight line in a single step height, such as that in an atomic step sample, was calculated and in importance of the calculation of the reliable range was shown in the uncertainty evaluation and in determining the measurement strategy.  相似文献   

17.
18.
The presented 3D-ball plate is used for testing machine tools with a workspace of 500 mm × 500 mm × 320 mm. The artefact consists of a 2D-ball plate which is either located by a kinematic correct coupling on a base plate or on a spacer. The spacers are placed between the base plate and the ball plate and are also kinematic coupled to the other elements of the artefact. The kinematic couplings provide a high repeatability of the measurement setup. Because of the specific application the known calibration procedures for 2D-ball plates are not applicable.A calibration method for the pseudo-3D-artefact on a coordinate measuring machine (CMM) is presented, with the aim to minimise the influence of geometric CMM errors. Therefore a computer simulation is used to analyse the effects of these disturbing errors on the calibration of the ball plate and the spacers. Using a reversal method, the plate is measured at four different horizontal positions after rotating the ball plate around its vertical axis. A couple of the CMM errors, e.g., a squareness error C0Y between the X- and Y-axis of the CMM, can be eliminated by that method—others have to be determined with additional measurements, e.g., the positioning errors EXX or EYY of the X- and Y-axis, respectively. The paper also contains a measurement uncertainty estimation for the calibration by use of experiments, tolerances and Monte Carlo-simulations. The achieved uncertainty for ball positions in the working volume is less than 2.1 μm (coverage factor k = 2).  相似文献   

19.
Interaction of hydrogen with metallic multi-layered thin films remains as a hot topic in recent days. Detailed knowledge on such chemically modulated systems is required if they are desired for application in hydrogen energy system as storage media. In this study, the deuterium concentration profile of Fe/V multi-layer was investigated by atom probe tomography (APT) at 60 and 30 K. It is firstly shown that deuterium-loaded sample can easily react with oxygen at the Pd capping layer on Fe/V and therefore, it is highly desired to avoid any oxygen exposure after D2 loading before APT analysis. The analysis temperature also has an impact on D concentration profile. The result taken at 60 K shows clear traces of surface segregation of D atoms towards analysis surface. The observed diffusion profile of D allows us to estimate an apparent diffusion coefficient D. The calculated D at 60 K is in the order of 10−17 cm2/s, deviating 6 orders of magnitude from an extrapolated value. This was interpreted with alloying, D-trapping at defects and effects of the large extension to which the extrapolation was done. A D concentration profile taken at 30 K shows no segregation anymore and a homogeneous distribution at cD=0.05(2) D/Me, which is in good accordance with that measured in the corresponding pressure–composition isotherm.  相似文献   

20.
In the last decade significant progress has been achieved in the development of measurement traceability for LNG inline metering technologies such as Coriolis and ultrasonic flow meters. In 2019, the world's first LNG research and calibration facility has been realised thus enabling calibration and performance testing of small and mid-scale LNG flow meters under realistic cryogenic conditions at a maximum flow rate of 200 m3/h and provisional mass flow measurement uncertainty of 0.30% (k = 2) using liquid nitrogen as the calibration fluid. This facility enabled, for the first time, an extensive test programme of LNG flow meters under cryogenic conditions to be carried out to achieve three main objectives; the first is to reduce the onsite flow measurement uncertainty for small and mid-scale LNG applications to meet a target measurement uncertainty of 0.50% (k = 2), the second is to systematically assess the impact of upstream flow disturbances and meter insulation on meter performance and the third is to assess transferability of meter calibrations with water at ambient conditions to cryogenic conditions. SI-traceable flow calibration results from testing six LNG flow meters (four Coriolis and two ultrasonic, see acknowledgment section) with water in a water calibration facility and liquid nitrogen (LIN) in the LNG research and calibration facility under various test conditions are fully described in this paper. Water and LIN calibration data were compared and it was observed that the influence of removing the meter insulation on mass flow rate measurement accuracy can be more significant (meter error > ±0.50%) than the influence of many typical upstream disturbances when the meter is preceded by a straight piping length equal to twenty pipe diameters (20D) with no additional flow conditioning devices, in particular for ultrasonic meters. The results indicate that the correction models used to transfer the water calibration to cryogenic conditions (using LIN) can potentially result in mass flow rate measurement errors below ±0.5%, however, the correction models are specific to the meter type and manufacturer. This work shows that the target measurement uncertainty of 0.50% can be achieved if the expanded standard error of the mean value measured by the meter is smaller than 0.40% (k = 2). It is planned to repeat these tests with LNG in order to compare the results with the LIN tests presented in this paper. This may reveal that testing with an explosion safe and environmentally friendly fluid such as LIN produces representative results for testing LNG flow meters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号