首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solar plants have nonlinear dynamics which must be taken into account when a control system is applied to them. The main purpose of the control systems is to maintain the outlet temperature in a desired reference value and, at the same time, attenuate the undesirable transients caused by the disturbances. Linear controllers, like PID ones, are not able to obtain good performance over the whole operation range of these kind of plants. To overcome these limitations two nonlinear controllers, a nonlinear model-based predictive controller and a distributed sliding mode controller, are applied to a solar plant in this work. The performance of these controllers is tested through experimental and simulation results, which show the tracking and disturbance rejection capabilities of the proposed controllers.  相似文献   

2.
Performance evaluation of two industrial MPC controllers   总被引:3,自引:0,他引:3  
This paper presents case studies of the performance evaluation of two industrial multivariate model predictive control (MPC) based controllers at the Mitsubishi chemical complex in Mizushima, Japan: (1) a 6-output, 6-input para-xylene (PX) production process with six measured disturbance variables that are used for feedforward control; and (2) a multivariate MPC controller for a 6-output, 5-input poly-propylene splitter column with two measured disturbances. A generalized predictive controller-based MPC algorithm has been implemented on the PX process. Data from the PX unit before and after the MPC implementation are analyzed to obtain and compare several different measures of multivariate controller performance. The second case study is concerned with performance assessment of a commercial MPC controller on a propylene splitter. A discussion on the diagnosis of poor performance for the second MPC application suggests significant model-plant-mismatch under varying load conditions and highlights the role of constraints.  相似文献   

3.
This article presents a multi-mode explicit controller for constrained linear systems with bounded disturbances using a switching strategy based on Model Predictive Control (MPC). In the proposed approach, the system switches among several MPC controllers having different performance levels. The switching is done so as to achieve increasing levels of performance as time evolves, reaching the desired controller in finite time steps. The conditions needed for switching and robust convergence of the multi-mode MPC controllers are provided. Compared with standard robust explicit MPC implementations, the proposed approach has the flexibility of having a large domain of attraction, a good asymptotic behaviour and a small number of partitions.  相似文献   

4.
A Smith predictive based MPC in a solar air conditioning plant   总被引:2,自引:0,他引:2  
This paper presents the application of a Model Predictive Controller to the temperature control in a solar air conditioning plant. The controller uses a Smith Predictor and includes a feed-forward control action to reject disturbances caused by solar radiation and the auxiliary gas heater. The tuning procedure is simple and allows a good compromise between robustness and performance. The behaviour of the controller is illustrated by experimental results.  相似文献   

5.
Hydrocracking is a crucial refinery process in which heavy hydrocarbons are converted to more valuable, low-molecular weight products. Hydrocracking plants operate with large throughputs and varying feedstocks. In addition the product specifications change due to varying economic and market conditions. In such a dynamic operating environment, the potential gains of real-time optimization (RTO) and control are quite high. At the same time, real-time optimization of hydrocracking plants is a challenging task. A complex network of reactions, which are difficult to characterize, takes place in the hydrocracker. The reactor effluent affects the operation of the fractionator downstream and the properties of the final products. In this paper, a lumped first-principles reactor model and an empirical fractionation model are used to predict the product distribution and properties on-line. Both models have been built and validated using industrial data. A cascaded model predictive control (MPC) structure is developed in order to operate both the reactor and fractionation column at maximum profit. In this cascade structure, reactor and fractionation units are controlled by local decentralized MPC controllers whose set-points are manipulated by a supervisory MPC controller. The coordinating action of the supervisory MPC controller accomplishes the transition between different optimum operating conditions and helps to reject disturbances without violating any constraints. Simulations illustrate the applicability of the proposed method on the industrial process.  相似文献   

6.
The cooling zone of an induration furnace exhibits a nonlinear dynamic behavior in addition to a strong coupling between output pressure and temperature. Simulation studies show that linear controller performance is unacceptable from an industrial point of view. In order to obtain adequate performance on a wide operating range, a nonlinear predictive controller (NLMPC) based on a phenomenological process model is proposed. Since the furnace simulation model shows that the equipment behaves as a Hammerstein model, a variable change is performed and a linear model predictive controller (MPC) is developed for the cooling zone. Both controllers are tested for set-point changes and disturbance rejection and give relatively similar performances. It is concluded that for processes having structured nonlinearities, as the cooling zone considered here, linear MPC should be preferred to NLMPC since the computation time is far less demanding and the industrial implementation easier.  相似文献   

7.
An analytical MPC controller was designed for force control of a single-rod electrohydraulic actuator. The controller based on a difference equation uses short control horizon. The constraints on both input and output variables are taken into consideration by the controller. The mechanism of output constraints satisfaction uses output prediction and makes possible to constrain the output values many sampling instants ahead. Thus, it extends capabilities of the analytical MPC controllers to the field reserved so far for much more computationally expensive numerical MPC algorithms. Results of real life experiments illustrate efficiency of the proposed controller. The results also show that the MPC controller has better tracking performance than conventional P and PI controllers. The MPC controller with the constraint handling mechanisms, though relatively simple, offers very good performance. As the design process is detailed, it is possible to relatively easy adapt the proposed approach to other control plants.  相似文献   

8.
In this work, a hybrid control scheme, uniting bounded control with model predictive control (MPC), is proposed for the stabilization of linear time-invariant systems with input constraints. The scheme is predicated upon the idea of switching between a model predictive controller, that minimizes a given performance objective subject to constraints, and a bounded controller, for which the region of constrained closed-loop stability is explicitly characterized. Switching laws, implemented by a logic-based supervisor that constantly monitors the plant, are derived to orchestrate the transition between the two controllers in a way that safeguards against any possible instability or infeasibility under MPC, reconciles the stability and optimality properties of both controllers, and guarantees asymptotic closed-loop stability for all initial conditions within the stability region of the bounded controller. The hybrid control scheme is shown to provide, irrespective of the chosen MPC formulation, a safety net for the practical implementation of MPC, for open-loop unstable plants, by providing a priori knowledge, through off-line computations, of a large set of initial conditions for which closed-loop stability is guaranteed. The implementation of the proposed approach is illustrated, through numerical simulations, for an exponentially unstable linear system.  相似文献   

9.
Model predictive control (MPC) has been proven in simulations and pilot case studies to be a superior control strategy for large buildings. MPC can utilize the weather and occupancy schedule forecasts, together with the system model, to predict the future thermal behavior of the building and minimize the overall energy use and maximize thermal comfort. However, these advantages come with the cost of increased modeling effort, computational demands, communication infrastructure, and commissioning efforts. Thus a typical approach is to, often rapidly, simplify the building modeling and MPC optimization problem while paying a price of not reaching the full performance potential. It has been shown that by employing accurate physics-based models, MPC performance can be notably increased closer to its theoretical performance bound. However, implementation of such high-fidelity MPC in real buildings remains a challenge, resulting in a lack of successful field test studies. This work presents the methodology and field test demonstration of a computationally efficient implementation of the white-box MPC in an office building in Belgium. The detailed model of the building is based on first-principle physical equations. The deployment and supervision of MPC operation in a practical setting are supported by an automated cloud-based communication infrastructure. The motivating factor behind the cloud-based architecture is its compatibility with a commercially appealing control as a service concept. The building is equipped with a ground source heat pump (GSHP) and thermally activated building structures (TABS), where the combination of both is also known as GEOTABS. From a control perspective, GEOTABS buildings are particularly challenging systems due to large scale, complex heating, ventilation and air conditioning (HVAC) system, and slow dynamics with time delays. On the other hand, there is an increased potential for energy savings due to the high thermal mass, which acts as thermal storage. The MPC operation is demonstrated during the challenging transient seasons (switching between heating and cooling), and its performance is compared to a traditional rule-based controller (RBC). We provide a proof of concept of real MPC operation for the most difficult seasons with notable GSHP energy use savings equal to 53.5% and thermal comfort improvement by 36.9%. Other MPC applications found in the literature describe tests for only cooling or only heating, and up to now only for a black-box or a grey-box approach.  相似文献   

10.
针对车辆队列建模时参数不确定导致控制存在误差的问题,以及队列中跟随车辆稳定性问题,分析车辆纵向动力学,设计一个鲁棒MPC控制器和滑移率控制器来提高队列车辆的控制精度和稳定性.首先对纵向MPC控制器进行改进,提高车辆队列控制精度;同时为防止跟随车辆的轮胎打滑,设计一个MPC滑移率控制器对跟随车辆的轮胎滑移率进行控制约束,保证了跟随车辆的纵向稳定性.最后,进行仿真实验验证其有效性.仿真实验结果表明,与传统的LQR、MPC控制器相比,改进的鲁棒MPC纵向控制器控制精度更高,同时MPC滑移率控制器可防止跟随车辆的轮胎打滑,保证了跟随车辆的纵向稳定性.  相似文献   

11.
One of the ways to improve the efficiency of solar energy plants is by using advanced control and optimization algorithms. In particular, model predictive control strategies have been applied successfully in their control.The control objective of this kind of plant is to regulate the solar field outlet temperature around a desired set-point. Due to the highly nonlinear dynamics of these plants, a simple linear controller with fixed parameters is not able to cope with the changing dynamics and the multiple disturbance sources affecting the field.In this paper, an adaptative model predictive control strategy is designed for a Fresnel collector field belonging to the solar cooling plant installed at the Escuela Superior de Ingenieros in Sevilla. The controller changes the linear model used to predict the future evolution of the system with respect to the operating point.Since only the inlet and outlet temperatures of the heat transfer fluid are measurable, the intermediate temperatures have to be estimated. An unscented Kalman filter is used as a state estimator. It estimates metal-fluid temperature profiles and effective solar radiation.Simulation results are provided comparing the proposed strategy with a PID + feedforward series controller showing better performance. The controller is also compared to a gain scheduling generalized predictive controller (GS-GPC) which has previously been tested at the actual plant with a very good performance. The proposed strategy outperforms these two strategies.Furthermore, two real tests are presented. These tests show that the proposed controller achieves adequate set-point tracking in spite of strong disturbances.  相似文献   

12.
Employed for artificial lifting in oil well production, Electrical Submersible Pumps (ESP) can be operated with Model Predictive Control (MPC) to drive an optimal production, while ensuring a safe operation and respecting system constraints. Due to the nonlinear dynamics of ESPs, Echo State Networks (ESNs), a recurrent neural network with fast training, are employed for efficient system identification of unknown dynamic systems. Besides the synthesis of highly accurate prediction models, this work contributes by designing two Nonlinear MPC (NMPC) strategies for the control of an ESP-lifted oil well: a standard Single-Shooting NMPC that embeds the ESN model completely, and the Practical Nonlinear Model Predictive Controller (PNMPC) that approximates the NMPC through fast trajectory-linearization of the ESN model. Another contribution is the implementation of an error correction filter to reject disturbances and counter modeling errors in both NMPC strategies. Finally, in computational experiments, both ESN-based NMPC strategies performed well in controlling simulated ESP-lifted oil wells when the model of the plant is unknown. However, PNMPC was more efficient and induced a similar performance to standard NMPC.  相似文献   

13.
‘This paper introduces the integration of a probing scheme into a robust MPC-based robot motion planning and control algorithm. The proposed solution tackles the output-feedback tube-based MPC problem using the partially-closed loop strategy to incorporate future measurements in a computationally efficient manner. This combination will provide not only a robust controller but also avoids overly conservative planning which is a drawback of the original implementation of the output-feedback tube-based MPC. The proposed solution is composed of two controllers: (i) a nominal MPC controller with probing feature to plan a globally convergent trajectory in conjunction with active localization, and (ii) an ancillary MPC controller to stabilize the robot motion around the planned trajectory. The performance and real-time implementation of the proposed planning and control algorithms have been verified through both extensive numerical simulations and experiments with a mobile robot.  相似文献   

14.
Using MPC to control middle-vessel continuous distillation columns   总被引:1,自引:0,他引:1  
The use of model predictive control (MPC) in middle-vessel continuous distillation column (MVCC) is discussed. It is shown that using a 5 × 5 MPC implementation (where all levels are included in MPC as integral process variables) allows using a smaller middle-vessel, particularly when disturbances can be measured: a good performance is ensured without having the middle vessel drained or overfilled. Also, it is shown that MPC practically circumvents the issue of tuning the middle-vessel level controller. Furthermore, the MVCC design makes conventional decentralised control perform comparably to MPC.  相似文献   

15.
Model Predictive control algorithms for trough solar plants make use of solar radiation measurements and the overall efficiency knowledge which are very useful in order to reject disturbances. However, direct solar radiation, mirror reflectivity and metal absorptance which affect overall efficiency, can only be measured locally. In this paper, an adaptative model predictive control using an unscented Kalman filter (UKF) to estimate both the effective solar radiation and the metal–fluid temperature profiles is proposed. The control algorithm is validated by tests with real data taken from the ACUREX field of the PSA in Almería (Spain).  相似文献   

16.
Spray drying is the preferred process to reduce the water content of many chemicals, pharmaceuticals, and foodstuffs. A significant amount of energy is used in spray drying to remove water and produce a free flowing powder product. In this paper, we present and compare the performance of three controllers for operation of a four-stage spray dryer. The three controllers are a proportional-integral (PI) controller that is used in industrial practice for spray dryer operation, a linear model predictive controller with real-time optimization (MPC with RTO, MPC-RTO), and an economically optimizing nonlinear model predictive controller (E-NMPC). The MPC with RTO is based on the same linear state space model in the MPC and the RTO layer. The E-NMPC consists of a single optimization layer that uses a nonlinear system of ordinary differential equations for its predictions. The PI control strategy has a fixed target that is independent of the disturbances, while the MPC-RTO and the E-NMPC adapt the operating point to the disturbances. The goal of spray dryer operation is to optimize the profit of operation in the presence of feed composition and ambient air humidity variations; i.e. to maximize the production rate, while minimizing the energy consumption, keeping the residual moisture content of the powder below a maximum limit, and avoiding that the powder sticks to the chamber walls. We use an industrially recorded disturbance scenario in order to produce realistic simulations and conclusions. The key performance indicators such as the profit of operation, the product flow rate, the specific energy consumption, the energy efficiency, and the residual moisture content of the produced powder are computed and compared for the three controllers. In this simulation study, we find that the economic performance of the MPC with RTO as well as the E-NMPC is considerably improved compared to the PI control strategy used in industrial practice. The MPC with RTO improves the profit of operation by 8.61%, and the E-NMPC improves the profit of operation by 9.66%. The energy efficiency is improved by 6.21% and 5.51%, respectively.  相似文献   

17.
Experimental Study on Advanced Underwater Robot Control   总被引:2,自引:0,他引:2  
The control issue of underwater robots is very challenging due to the nonlinearity, time variance, unpredictable external disturbances, such as the sea current fluctuation, and the difficulty in accurately modeling the hydrodynamic effect. Conventional linear controllers may fail in satisfying performance requirements, especially when changes in the system and environment occur during the operation since it is almost impossible to manually retune the control parameters in water. Therefore, it is highly desirable to have an underwater robot controller capable of self-adjusting control parameters when the overall performance degrades. This paper presents the theory and experimental work of the adaptive plus disturbance observer (ADOB) controller for underwater robots, which is robust with respect to external disturbance and uncertainties in the system. This control scheme consists of disturbance observer (DOB) as the inner-loop controller and a nonregressor based adaptive controller as the outer-loop controller. The effectiveness of the ADOB was experimentally investigated by implementing three controllers: PID, PID plus DOB, and ADOB on an autonomous underwater robot, ODIN III.  相似文献   

18.
This paper presents two case studies on the performance evaluation and model validation of two industrial multivariate model predictive control (MPC) based controllers: (1) a 7-output, 3-input MPC with three measured disturbance variables for controlling a part of kerosene hydrotreating unit (KHU) and (2) a 8-output, 4-input MPC with five measured disturbances for controlling a part of naphtha hydrotreating unit (NHU). The first case study focuses on potential limits to control performance due to constraints and limits set at the time of controller commissioning. The root causes of sub-optimal performance of KHU are successfully isolated. Data from the NHU unit with MPC ‘on’ and with MPC ‘off’ are analyzed to obtain and compare several different measures of multivariate controller performance. Model quality assessment for the two MPCs are performed. A new model index is proposed to have a measure of simulation ability and prediction ability of a model. Closed-loop identification of KHU and closed-loop identification of NHU are conducted using the asymptotic method (ASYM) proposed by Zhu (1998).  相似文献   

19.
Nonlinear repetitive control   总被引:1,自引:0,他引:1  
Repetitive controllers are generally applied to reject periodic disturbances and to track periodic reference signals with a known period. Their design is based on the internal model principle, proposed by Francis and Wonham (1975). This paper describes a new finite-dimensional SISO repetitive controller for two different classes of nonlinear plants. Simulation results show asymptotic tracking of the periodic reference signal by the proposed repetitive controller in closed loop up to the Nth harmonic frequency. A proof of robustness of the repetitive control system to small nonlinearities, like actuator nonlinearities, is provided  相似文献   

20.
Move-blocking lowers the computational complexity of model predictive control (MPC) problems by reducing the number of optimization variables. However, this may render states close to constraints infeasible. Thus move-blocking generally results in control laws that are restrictive; the controller domains may be unacceptably and unnecessarily small. Furthermore, different move-blocking strategies may result in controller domains of different sizes, all other factors being equal. In this paper an approach is proposed to design move-blocking MPC control laws that are least-restrictive, i.e. the controller domain is equal to the maximum controlled invariant set. The domains of different move-blocking controllers are then by design equal to each other. This allows comparison of differing move-blocking strategies based on cost performance only, without needing to consider domain size also. Thus this paper is a step towards being able to derive optimal move-blocking MPC control laws.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号