首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用聚氨酯泡沫为原始骨架,用高频感应加热反应熔渗制备TiC/Ti_3SiC_2泡沫陶瓷,研究了在制备过程中不同阶段泡沫体的Ti含量对其相组成、微区化学成分、显微组织以及抗压缩性能的影响。结果表明,随着泡沫体中Ti含量的增加,在其骨架中柑继生成TiC、Ti_3SiC_2及少量的Ti_5Si_3.骨架的致密度提高,泡沫材料...  相似文献   

2.
钛碳化硅 (Ti3Si C2 )具有良好的导电、导热、高温强度、抗氧化和抗热震等性能 ,因此被认为是在高温领域有广泛应用前景的新材料。本文概述了钛碳化硅的结构特征、制备方法、主要性能、应用前景和国内外发展趋势。  相似文献   

3.
提出制备Ti3SiC2-SiC复合材料的一种新思路,即利用液态硅渗透TiC/C预制体原位反应制备Ti3SiC2-SiC复合材料,并采用XRD、SEM和EDS考察了材料的显微结构和力学性能.结果表明:制备出材料主要由Ti3SiC2相组成,SiC相含量较少;Ti3SiC2晶相呈现出3~10μm大小的层状结构;施加10kg的压力下测得样品S1550-1,S1550-3和S1550-4的硬度分别为6.8GPa、7.1GPa和7.8GPa,它们的密度在3.55~3.96g/cm3范围内.实验结果表明,利用液态硅渗透技术原位制备Ti3SiC2-SiC复合材料是一种可行的新工艺.  相似文献   

4.
利用粉末冶金/放电等离子烧结技术制备了添加Mo、Cu、Ag和Nb的Ti_3SiC_2基复合材料,并察了Ti_3SiC_2/Mo、Ti_3SiC_2/Cu、Ti_3SiC_2/Ag和Ti_3SiC_2/Nb复合材料的相态组成和摩擦学性能。研究表明,金属相的添加会造成Ti_3SiC_2基体不程度的分解,生成TiC、Si和钛硅化合物,其中Mo和Cu与Ti_3SiC_2中化学反应活性较高的Si生成Mo_5Si_3、(Ti_(0.8)Mo_(0.2))Si_2、MoSi_2和Cu3Si等,而Ag和Nb未发生反应,在复合物中以金属单质相存在;四种复合物的摩擦学性能均优于纯Ti_3SiC_2,其中Ti_3SiC_2/Ag和Ti_3SiC_2/Nb复合物的抗磨损性能较好;晶粒拔出脱落造成的磨粒磨损是纯Ti_3SiC_2及其复合材料的主要磨损机制,复合材料中TiC及金属硅化物等硬质相在摩擦过程中定扎了周围的Ti_3SiC_2软基体,抑制了摩擦过程中晶粒的拔出脱落,但多物相并存又使得复合物晶间结合强度降低,导致磨损率提高;复合物中金属单质Ag和Nb的存在起到了一定程度的晶间强化作用;材料转移也是造成复合物磨损率高的一个原因。  相似文献   

5.
钛碳化硅 (Ti3Si C2 )具有良好的导电、导热、高温强度、抗氧化和抗热震等性能 ,因此被认为是在高温领域有广泛应用前景的新材料。本文概述了钛碳化硅的结构特征、制备方法、主要性能、应用前景和国内外发展趋势。  相似文献   

6.
机械合金化合成(ZrC+TiC)/Cu复合材料的研究   总被引:4,自引:0,他引:4  
以Zr、Ti、Cu和C元素粉末为原料,用XRD、EPMA、SEM、力学性能检测等方法,研究机械合金化合成的ZrC/C和(ZrC FiC)/Cu复合材料的力学和电学性能.实验结果表明:可以用机械合金化合成TiC、ZrC粉末.力学性能方面,经ZrC弥散的Cu基复合材料抗拉强度为359.45MPa,布氏硬度为146.2,经(ZrC TiC)弥散的复合材料抗拉强度为377.3MPa,布氏硬度为166.5,说明ZrC作为第二相可以明显改善Cu基材料的力学性能,而且(ZrC TiC)两相强化效果更好.由断口形貌分析,复合材料主要发生沿界面脆性断裂.电学性能方面,由于致密度不够高以及其他杂质相的引入,材料的相对电导率(IACS标准)有待提高.  相似文献   

7.
刘建科  解晨  朱建锋  叶兰 《功能材料》2015,(7):7143-7147
以Ti、TiC、Al和TiO2为原料,通过原位热压反应烧结法在1 350℃合成Ti2AlC/Al2O3复合材料。利用XRD详细研究了其反应过程,并分析了Al2O3对材料微观结构和性能的影响。结果表明,该体系在热压过程中的反应分多步进行,主要包括Ti粉与Al粉反应生成Ti-Al金属间化合物,TiO2与Al反应生成Al2O3以及Ti-Al金属间化合物与TiC反应生成Ti2AlC材料。原位反应生成的Al2O3均匀分布在Ti2AlC晶界上,抑制了Ti2A1C晶体的异常生长,从而使基体相Ti2AlC晶粒细小、均匀。力学性能测试表明Ti2AlC/12%(质量分数)Al2O3复合材料的硬度、抗压强度、抗弯强度和断裂韧性较Ti2AlC单相材料分别提高了66%,126%,130%和19.3%,并分析了其改性机理。  相似文献   

8.
采用自蔓延燃烧合成法在室温下的空气中制备出了TiB2/Al2O3复相陶瓷,通过X射线衍射(XRD)和扫描电镜(SEM)分析表明:大部分TiB2的形貌为规则的块状,晶粒细小,平均尺寸为几个μm,但也出现了TiB2枝晶和棒状晶。而Al2O3的颗粒较大(10~40μm左右),形状不规则,Al2O3的断口呈层片状,Al2O3和TiB2出现聚集现象。  相似文献   

9.
引入MgAl_2O_4对Ti_3SiC_2基复合材料性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用反应热压烧结法制备MgAl2O4/Ti3SiC2复合材料,研究热压温度和MgAl2O4含量对该复合材料相组成、力学性能及抗氧化性能的影响。结果表明:热压温度影响MgAl2O4/Ti3SiC2复合材料相组成,在1 450℃烧结可得到性能良好的MgAl2O4/Ti3SiC2复合材料。引入适量的MgAl2O4,起到弥散强化的作用,有助于提高复合材料的力学性能,当引入量为20wt%时,抗弯强度为527.6 MPa,断裂韧性为7.09 MPa·m1/2。MgAl2O4/Ti3SiC2试样的抗氧化性能优于Ti3SiC2试样。MgAl2O4/Ti3SiC2复合材料在1 400℃氧化后的氧化层分两层,外层是Mg0.6Al0.8Ti1.6O5和金红石型TiO2,内层是由TiO2、方石英SiO2及少量未氧化的基体相混合组成。  相似文献   

10.
用静电纺丝和水热法制备了Bi4Ti3O12/TiO2异质结,用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)对Bi4Ti3O12/TiO2异质结和TiO2纳米棒的形貌及晶体结构进行了表征和分析。其紫外可见漫反射光谱(UV-vis DRS)表明,相比于纯TiO2纳米棒,Bi4Ti3O12/TiO2异质结的吸收带边有明显的红移,禁带宽度也有减小,说明Bi4Ti3O12/TiO2异质结的形成有利于提高样品对可见光的吸收。从光致发光图谱(PL)可见,Bi4Ti3O12/TiO2异质结在440 nm的发射峰强度明显减弱,说明Bi4Ti3O12/TiO2之间的异质结结构有效抑制了光生电子和空穴的复合。对甲基橙的紫外光催化降解结果表明,这种异质结在紫外光辐射下表现出更高的光催化活性,随着异质结浓度的增加其光催化性能明显提高。  相似文献   

11.
铸态(TiB+TiC)/Ti复合材料组织和性能的研究   总被引:10,自引:1,他引:9       下载免费PDF全文
利用钛与碳化硼及石墨之间的自蔓燃高温合成反应,经非自耗电弧熔炼工艺制备了TiB晶须和TiC粒子混杂增强的钛基复合材料。借助扫描电镜和透射电镜观察了复合材料的微观结构,结果表明:原位合成增强体均匀地分布在基体合金中,TiB增强体以晶须状生长,而TiC增强体以树枝状、等轴状生长。原位合成增强体与基体合金的界面非常干净,不存在界面反应产物,但TiC粒子周围的基体合金中存在高密度的位错。原位合成增强体的加入提高了复合材料的力学性能,合金化元素铝的加入不仅固溶强化了钛基体合金,同时使增强体长得更为细小,也有利于改善复合材料的性能。   相似文献   

12.
采用溶胶-凝胶法制备了层状锂离子电池正极材料LiNi(1-x)/3Co(1-x)/3Mn(1-x)/3CrxO2 (x=0,0.02,0.05,0.1).利用XRD、电化学测试等手段对材料的结构、电化学等性能进行表征.结果表明:LiNi(1-x)/3Co(1-x)/3Mn(1-x)/3CrxO2仍然为层状α-NaFeO2结构;当x=0.02,0.2C充放电首次放电比容量达到195mAh/g,首次放电效率高达到91.7%,并且有着良好的循环性能.  相似文献   

13.
采用溶胶-凝胶法制备石英砂负载Bi_4Ti_3O_(12)/SiO_2光催化材料,研究负载对Bi_4Ti_3O_(12)的物理性质和光催化活性的影响。结果表明,负载后的层状钙钛矿结构Bi_4Ti_3O_(12)包覆在非晶态石英砂球体表面,Bi_4Ti_3O_(12)中各元素的电子结合能没有发生改变。活性艳红X-3B在纯Bi_4Ti_3O_(12)和不同负载量x Bi_4Ti_3O_(12)/SiO_2上的吸附率不超过3%。负载后Bi_4Ti_3O_(12)的光催化活性均有提高,其中质量分数为50%负载量的Bi_4Ti_3O_(12)/SiO_2具有最高的活性。在Bi_4Ti_3O_(12)和质量分数为50%负载量的Bi_4Ti_3O_(12)/SiO_2上的光催化反应速率常数分别为0.021 s-1和0.027 s-1。  相似文献   

14.
Ti3SiC2/SiC是工业熔盐铝电解生产中的主要阳极材料,当前对其电化学腐蚀研究报道不多。采用原位热压法制备了不同SiC含量的Ti3SiC2/SiC复合材料,研究了其在电解铝中的电化学腐蚀行为,并利用XRD和SEM进行了腐蚀产物和微观形貌分析。结果表明:SiC的含量对Ti3SiC2/SiC复合材料的腐蚀速率有较大的影响;Ti3SiC2/3SiC的腐蚀速率最小;阳极腐蚀产物主要是TiO2和少量的SiO2,其表面形成了一层致密的TiO2氧化膜,有效阻止了氧原子向基体扩散,组成为Ti3SiC2/3SiC的表面氧化膜致密度高,腐蚀程度最小;SiC的含量影响氧化膜的表面结构,进而影响着复合材料在电化学腐蚀中的抗腐蚀性能。  相似文献   

15.
采用TG-DTA、XRD和SEM技术研究了氧化温度、TiN含量和气氛氧分压对原位TiN/O′-Sialon复相材料抗氧化性能的影响.结果表明,在800~1000°C的空气中,TiN氧化为TiO2,O′-Sialon不发生氧化,恒温时间足够长,材料转变为原位TiO2/O′-Sialon复相材料,氧化过程遵循对数规律,反应表观活化能为56.1kJ/mol.在1200~1320°C的空气中,TiN和O′-Sialon都发生氧化,材料表面有"保护膜"生成,氧化过程遵循抛物线规律,反应表观活化能为48.8kJ/mol;增加材料中TiN含量会导致材料氧化增重量增加,但也有助于材料表面"保护膜"的形成.提高气氛氧分压,材料的氧化程度加剧.  相似文献   

16.
利用常规钛合金的真空自耗熔炼以及热加工技术,制备了原位自生(TiB+TiC)/Ti-1100复合材料。对该复合材料的微观结构进行研究,并分别在高温环境下测试了基体合金以及复合材料的高温拉伸性能,最后对其强化机制进行研究。结果表明:钛基复合材料的屈服强度可以用数学模型来计算。增强体的加入使复合材料的高温力学性能明显优于基体合金,且其高温强度的提高主要受益于碳的固溶强化、TiB纤维的传递载荷、TiC颗粒的强化位错等因素的贡献。  相似文献   

17.
AIN-TiB2复相微波衰减材料的性能   总被引:1,自引:0,他引:1  
采用热压烧结工艺制备了AIN—TiB2复相微波衰减材料。通过网络分析仪,研究了TiB2含量对材料微波衰减性能的影响。结果表明,当不加衰减剂TiB2时,材料几乎没有衰减性能;当TiB2含量低于10wt%时,材料呈现选频衰减且衰减量非常的小;当TiB2含量在25wt%~50wt%时,材料呈现良好的多点选频衰减,且随着TiB2含量的增加,材料的衰减量增加。初步探讨了AIN—TiB2复相材料微波衰减机理。  相似文献   

18.
以半导体热电模块为研究对象,通过实验研究和数值模拟的方法,对热电模块及系统的输出性能、结构参数进行实验测试与模拟分析。结果表明,所研究的细长比m=0.5时,热电偶对的输出功率为5mW;m=1.5时,输出功率为3.38mW。在设计热电模块的过程中,综合考虑细长比m对导热性、导电性能的影响有利于实现输出功率最大化,为在太阳能利用、工业废热利用等领域的应用提供可能。  相似文献   

19.
用原位合成法制备了不同固载量的磷钨酸催化剂H3PW12O40/SiO2作催化剂,通过FT-IR、XRD等手段对催化剂进行表征。结果表明,在煅烧温度为200℃,活化时间为4h,H3PW12O40负载量为20%时,原位法制备的催化剂在载体孔壁中高度分散的磷钨酸仍然保持了Keggin特征结构,且与SiO2材料的表面羟基存在一定的化学相互作用。对苯甲醛1,2-丙二醇缩醛合成的催化性能研究表明,固定苯甲醛用量为0.2mol,在n(苯甲醛)∶n(1,2-丙二醇)=1∶1.5,催化剂的用量占反应物料总质量1.0%,环己烷用量为8mL,反应时间为60min条件下,产品收率可达88.5%。催化剂使用5次以后,催化活性仍然保持在接近51.7%。  相似文献   

20.
采用原位合成法研究稀土元素Ce,Sc,Er对TiB_2/Al复合材料TiB_2颗粒和基体组织的影响,并对复合材料的拉伸性能进行分析。结果表明,稀土元素的添加显著改善了复合材料的组织和性能。添加0.3%(质量分数)Sc和Er的复合材料的TiB_2颗粒分布相对均匀,稀土元素Er对基体合金的组织细化效果最显著,其次是Sc。添加稀土Sc和Er元素的复合材料拉伸强度较好,分别提高了32%和31%,添加稀土Er元素的复合材料伸长率最佳,提高了85%,因此,其拉伸性能也最佳。添加稀土元素Sc和Er后,复合材料的断裂形式为微孔聚集型的韧性断裂。稀土元素对复合材料的作用机理表现在两方面:一是稀土元素的添加改善了复合材料的润湿性,并抑制了TiB_2颗粒的团聚;另一方面,稀土元素的添加使得基体合金组织细化,从而提高了复合材料的拉伸强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号