首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
许瑞阳  白勇  司慧  刘德财  祁项超 《化工进展》2022,41(4):1742-1749
为探究不同工况下热解流化床反应器的气力进料特性,设计并搭建了流化床反应器气力进料冷态试验装置。生物质原料和床料分别采用落叶松颗粒和石英砂颗粒,通过试验测得了本装置的最小流化速度,研究了流化气速、喷动气速、流量比、初始静床高、石英砂粒径、落叶松粒径对流化床反应器气力进料特性的影响。试验结果表明:流化气速和喷动气速的增加均会提高进料率;流化气使床料流化并为落叶松颗粒提供进料空间,喷动气为落叶松颗粒提供动能,并平衡一部分床层压力;落叶松与石英砂粒径的增加对进料效果不利;流量比在1.9~2.7范围内进料率高且稳定性好。本文构建了生物质、床料与气体的三相流物理及数学模型,开展试验对模型进行验证,结果表明其预测误差为±13%。  相似文献   

2.
研究了流化床内的生物质快速裂解模型,其特点是考虑了原料粒子在下部密相区和上部稀相区的不同反应历程.模型的计算结果表明,原料粒子和产物气体在反应器内的停留时间有较大的区别,其变化情况对裂解产物的分布有很大影响.由该模型得到的计算结果能和实验值很好吻合,表明它能较好地描述流化床反应器内生物质快速裂解的反应过程.结合计算数据对影响裂解结果的一些因素进行了分析.  相似文献   

3.
A fast pyrolysis process in a bubbling fluidized bed has been modeled, thoroughly reproduced and scrutinized with the help of a combined Eulerian/Lagrangian simulation method. The 3‐D model is compared to experimental results from a 100 g/h bubbling fluidized bed pyrolyzer including such variables as particle composition at the outlet and gas/vapor/water yields as a function of fluidization conditions, biomass moisture concentrations, and bed temperatures. Multiprocessor simulations on a high‐end computer have been carried out to enable the tracking of each of the 0.8 million individual discrete sand and biomass particles, making it possible to look at accurate and detailed multiscale information (i.e., any desired particle property, trajectory, particle interaction) over the entire particle life time. The overall thermochemical degradation process of biomass is influenced by local flow and particle properties and, therefore, accurate and detailed modeling reveals unprecedented insight into such complex processes. It has been found, that the superficial fluidization velocity is important while the particle moisture content is less significant for the final bio‐oil yield. © 2011 American Institute of Chemical Engineers AIChE J, 58: 3030–3042, 2012  相似文献   

4.
In the present study, an Eulerian‐Eulerian computational fluid dynamics (CFD) model, combined with a comprehensive biomass reaction scheme, was used to simulate fast pyrolysis of four different biomass types in the fluidized bed reactors. The study focuses on the influence of biomass components of different biomass types on the yields, formations, and contents of compositions of pyrolysis products. The result showed that the bio‐oil yield of cellulose‐rich biomass was higher than other biomass types, and char was mainly produced by the fast pyrolysis of LIG‐C of biomass. Moreover, the contents of bio‐oil components were affected by the fast pyrolysis of biomass components. Further, the energy recovery coefficient (ERC) of bio‐oil obtained from pyrolysis of different biomass types was also calculated and analyzed in this paper.
  相似文献   

5.
A simple model that simulates a single biomass particle devolatilization is described. The model takes into account the main physical and chemical factors influencing the phenomenon at high temperatures (>700 K), where the production of gaseous components far outweighs that of liquids. The predictions of the model are shown to be in good agreement with published data. The model is then applied to the devolatilization of biomass in a fluidized bed, in which attention is focused on heat transfer, particle mixing and elutriation, and gas production. Predictions on the overall devolatilization time for a biomass particle are compared with experimental results obtained in a fluidized bed reactor in which the process was monitored by continuous measurement of the bed pressure. Good correspondence of predicted with calculated values was obtained, supporting the validity of the many approximations made in the derivation of the governing relationships for the pyrolysis process.  相似文献   

6.
7.
A. Aho  A.V. Lashkul  M. Ziolek  T. Salmi  M. Hupa 《Fuel》2010,89(8):1992-2000
In this paper, the influence of the proton forms of beta, Y and ferrierite zeolites and their iron modified counterparts during upgrading of pine wood pyrolysis vapours under nitrogen atmosphere was investigated. A dual-fluidized bed reactor was used where in the first bed pyrolysis of pine wood occurred, and in the second upgrading of the pyrolysis vapours over zeolites was conducted. The temperature for pyrolysis and upgrading was 400 and 450 °C, respectively. De-oxygenation reactions over the proton form and iron modified zeolites increased compared to the non-catalytic pyrolysis. The increased selectivity towards organic compounds through de-oxygenation could be noticed as a higher water yield and CO formation.  相似文献   

8.
在冷态模拟实验和煤热解动力学计算的基础上,对粉煤气体热载体快速热解提升管反应器的高度进行了计算。利用高速摄像粒子测速法结合互相关算法研究了不同气体流量和不同颗粒粒径时固体颗粒在热解提升管中的运动速度,通过求解神府煤热解动力学方程,得到了不同粒径神府煤颗粒热解挥发分析出的时间,从而确定了快速热解提升管反应器的高度。研究结果表明:当气体流量在850 m3/h,粉煤的粒径主要集中在0.7—3.0 mm时,提升管的高度应选择在10.0 m。  相似文献   

9.
王娜娜  李萍  司慧  齐敬一 《化工进展》2019,38(10):4780-4785
设计制造了一套生物质热裂解用双仓式气力输送喂料装置,研究流化气速、喷动气速、有效喷射距离(s=50mm、100mm、150mm、200mm)、输料管内径(d 1=21mm、24mm、29mm)和生物质颗粒粒径对进料率的影响。试验结果表明,进料率随着流化流速、喷动气速、输料管内径、生物质颗粒粒径的增大而增大。在有效喷射距离为100mm时,进料率最高。固气比随着流化气或喷动气速的增加先增加后降低,在流化气和喷动气的共同作用下,随着气体流速的增加固气比一直在降低。为了描述进料率与喷动气速、流化气速、有效喷射距离、输料管内径以及生物质颗粒粒径之间的关系,采用多元线性回归分析,建立了多元线性回归模型。开展了额外试验验证模型的准确性,结果表明试验值和预测值误差在±10.2%以内,表明所建立的模型可靠,可以利用该模型预测喂料器的进料率。  相似文献   

10.
高新源  徐庆  李占勇  田玮  张建国 《化工进展》2016,35(10):3032-3041
当今化石能源日渐枯竭和环境压力日益加重是亟待解决的问题,而生物质热解液化技术被认为是解决能源紧张的潜在方法,尤其是生物质快速热解技术。随着生物质快速热解技术与工艺不断成熟,需要快速热解装置不断放大以提高处理量,以实现生物质快速热解的工业化。生物质快速热解装置复杂且多样化,在装置的放大过程中,各系统的合理选择是难点。本文首先对生物质热解机理、快速热解过程的粒径选择和前处理进行了简述,并对快速热解流程中的进料系统、供能系统、热解反应器和快速冷凝系统4个关键系统进行了综述,着重介绍了快速热解反应器的类型及其特点,提供了该4个关键系统的选择及研究趋势。流化床反应器具有易放大、可以较好地实现自热式快速热解的优点,本文总结出流化床式反应器是目前研究的热点。在保证产品品质下,设备易放大、稳定实现自热式、流程能耗低、运行稳定安全等是快速热解装置未来的研究方向。  相似文献   

11.
By considering the features of fluidized-bed reactors and the kinetic mechanism of biomass gasification, a steady-state, isothermal, one-dimensional and two-phase mathematical model of biomass gasification kinetics in bubbling fluidized beds was developed. The model assumes the existence of two phases — a bubble and an emulsion phase — with chemical reactions occurring in both phases. The axial gas dispersion in the two phases is accounted for and the pyrolysis of biomass is taken to be instantaneous. The char and gas species CO, CO2, H2, H2O, CH4 and 8 chemical reactions are included in the model. The mathematical model belongs to a typical boundary value problem of ordinary differential equations and its solution is obtained by a Matlab program. Utilizing wood powder as the feedstock, the calculated data show satisfactory agreement with experimental results and proves the effectiveness and reliability of the model. __________ Translated from Chemical Engineering (China), 2007, 35(10): 23–26 [译自: 化学工程]  相似文献   

12.
生物质流化床空气-水蒸气气化模型研究   总被引:2,自引:0,他引:2  
根据流化床反应器特点,结合生物质气化动力学反应机理,建立了生物质在流化床内气化的等温稳态、一维二相动力学模型。该模型所做的主要假定如下:流化床分为气泡相和乳相,在气泡相和乳相内均存在化学反应,考虑二相内的轴向气体扩散,生物质热解过程瞬时完成,主要考虑焦碳以及CO,CO2,H2,H2O,CH4等在流化床内发生的8个主要化学反应。数学模型属于常微分方程组边值问题,利用数值计算软件M atlab7.0进行编程求解。以木粉为原料,将模型结果与实验结果进行了对比,模拟结果与试验数据符合良好,在一定程度上证明了模型的有效性和可靠性。  相似文献   

13.
Catalytic fast pyrolysis of cellulose was studied at 500°C using a ZSM‐5 catalyst in a bubbling fluidized bed reactor constructed from a 4.92‐cm ID pipe. Inert gas was fed from below through the distributor plate and from above through a vertical feed tube along with cellulose. Flowing 34% of the total fluidization gas through the feed tube led to the optimal mixing of the pyrolysis vapors into the catalyst bed, which experimentally corresponded to 29.5% carbon aromatic yield. Aromatic yield reached a maximum of 31.6% carbon with increasing gas residence time by changing the catalyst bed height. Increasing the hole‐spacing in the distributor plate was shown to have negligible effect on average bubble diameter and hence did not change the product distribution. Aromatic yields of up to 39.5% carbon were obtained when all studied parameters were optimized. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1320–1335, 2014  相似文献   

14.
为了考察循环流化床煤燃烧/热解双反应器系统的稳定性,在冷态实验装置上以电厂锅炉灰为实验物料,其中提升管的内径为100 mm,高为6.7 m,与热解室相连立管的内径为44 mm,高3 m,热解室的截面积为200 mm×200 mm,高770 mm。分别考察了影响系统稳定运行的主要因素,并对系统中存在的几对平衡关系进行了分析。结果表明,旋风料腿内的固体料位高度、热解室内的料位高度以及热解室内的压力等是影响系统稳定运行的关键因素,尤其是热解室内压力的增加有可能使立管内料封破坏,最终导致系统瘫痪。而提升管与热解室立管之间压力的平衡以及提升管与旋风分离器料腿之间压力的平衡等在操作过程中必须保持稳定,否则也会发生窜气、架料、旋风分离器效率下降等现象,影响系统稳定运行。  相似文献   

15.
A. Aho  K. Eränen  M. Hupa 《Fuel》2008,87(12):2493-2501
Catalytic pyrolysis of biomass from pine wood was carried out in a fluidized bed reactor at 450 °C. Different structures of acidic zeolite catalysts were used as bed material in the reactor. Proton forms of Beta, Y, ZSM-5, and Mordenite were tested as catalysts in the pyrolysis of pine, while quartz sand was used as a reference material in the non-catalytic pyrolysis experiments. The yield of the pyrolysis product phases was only slightly influenced by the structures, at the same time the chemical composition of the bio-oil was dependent on the structure of acidic zeolite catalysts. Ketones and phenols were the dominating groups of compounds in the bio-oil. The formation of ketones was higher over ZSM-5 and the amount of acids and alcohols lower than over the other bed materials tested. Mordenite and quartz sand produced smaller quantities of polyaromatic hydrocarbons than the other materials tested. It was possible to successfully regenerate the spent zeolites without changing the structure of the zeolite.  相似文献   

16.
Agglomeration is a major problem in biomass fired fluidized bed combustors and gasifiers. Mechanism, reduction options and detection techniques of agglomeration are reviewed. Agglomeration may be classified broadly into three types: defluidization induced agglomeration, melt‐induced agglomeration and coating‐induced agglomeration. Sodium and potassium content of the biomass are the major contributors to the agglomeration in biomass fired fluidized beds. Higher temperature, lower fluidizing velocity and coarser bed particles also increase the risk of agglomeration. Alternative bed materials, additives or the co‐combustion of biomass with other fuels can reduce agglomeration potential of a fluidized bed. Two agglomeration detection techniques are discussed: controlled fluidized bed agglomeration and early agglomeration recognition system.  相似文献   

17.
Taking 1,2‐dichloroethane from the oxychlorination reaction is a commercially very important process due to the large application of the 1,2‐dichloroethane in the chemical industry of PVC production. This work presents the modeling and simulation of an oxychlorination reactor with a fluidized bed. The pseudo‐homogeneous model with one‐dimensional flow in steady state was applied based on the theory of fluidized bed in two phases. It allows the sensitivity analysis of the operational and project parameters of the reactor. The ordinary differential equations system that represents the mathematical model of the reactor was solved through the application of the numerical method of Newton–Raphson's. The results obtained have proved that the developed model represents the system suitably, in spite of the one‐dimensional model. The effect of different parameters was investigated through the sensitivity analysis, and the results show that the parameters that have the largest influence on the reactor performances are: fluidized bed height, bubble diameter, residence time, cupric chloride weight in the catalyst, and emulsion phase temperature.  相似文献   

18.
The kinetics and modelling of coal gasification were studied in the newly developed fluidized bed thermogravimetric analyzer. The total weight loss obtained from the fluidized bed reactor and the total gas product are in general agreement. The presented model for the micro‐fluidized bed reactor encompasses the kinetics of coal pyrolysis as well as the gasification reactions. For coal pyrolysis, the resulting activation energies for the individual gases were 34.7 to 59.8 kcal/mol. These values are 19 to 21 % lower than those found in the literature for similar coals. This decrease of the activation energies of the endothermic pyrolysis reactions is attributed to a gradient of temperature of 185 to 209 °C. The obtained activation energy for the CO shift reaction is 46.6 kcal/mol, increasing by 20 % from the one used in the literature. This increase of the activation energy of such a mildly exothermic reaction represents an equivalent of 170 °C gradient of temperature. The effects of temperature on the yield and the composition of the gas product are studied. Experimental results and equilibrium data are also compared. The model shows reasonably good agreement with the experimental results, except for the water gas shift reaction.
  相似文献   

19.
A mathematical model of biomass gasification in a fluidized bed has been developed. It considers axial variations of concentrations and temperature in the bubble and emulsion phases. The mass balance involves instantaneous oxidation and equilibrium devolatilization of the biomass, kinetics of solid-gas gasification reactions as well as of gaseous phase reactions and interphase mass transfer and gas convection. The energy balance is solved locally for each vertical volume element, and globally on the reactor by iteration on the temperature at the bottom of the bed. Three parameters have been adjusted based on the experimental results: the heat transfer coefficient at the wall, the weighting of the kinetics of the water-gas shift reaction and the fraction of biomass carbon remaining as char after devolatilization. The model is used to simulate a pilot scale (50 kg/h) biomass gasifier, and its predictions compared to experimental measurements. The temperature and gaseous concentrations are estimated with good accuracy for the experiments using a wood feedstock, except for the concentration of hydrogen which is overestimated.  相似文献   

20.
The modelling of a biomass fluidized bed gasification system, one of the most effective ways to produce energy from biomass resources and wastes, has been performed in this study. The effect of the turbulence phenomena, including calculations relating to flow turbulence, chemical fuel reactions, and energy and momentum exchange between multiple solid and gas phases, has been taken into account in the current research as a novel approach. A computational fluid dynamics case study model that combines equations with comprehensive geometry has been considered. Results have been compared with published operational records of an existing power plant to validate the model. The solid particle distribution, the velocity of the mixture and gas phase, the turbulent flow viscosity ratio, and the temperature distribution in the model indicated the accuracy of the simulation performance compared with the experimental studies. The production of the molar fraction of the constituent elements of the synthesis gas has been evaluated in transient conditions. Additionally, 35 s after the process began, the system's performance was estimated, and the results indicated the average molecular weights of hydrogen, carbon monoxide, carbon dioxide, and methane are 26%, 23%, 12.5%, and 3.3%, respectively, which presented high precision with the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号