首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Commercial grade poly(ethylene terephthalate), (PET, intrinsic viscosity = 0.80 dL/g) and poly(butylene terephthalate), (PBT, intrinsic viscosity = 1.00 dL/g) were melt blended over the entire composition range using a counterrotating twin‐screw extruder. The mechanical, thermal, electrical, and rheological properties of the blends were studied. All of the blends showed higher impact properties than that of PET or PBT. The 50:50 blend composition exhibited the highest impact value. Other mechanical properties also showed similar trends for blends of this composition. The addition of PBT increased the processability of PET. Differential scanning calorimetry data showed the presence of both phases. For all blends, only a single glass‐transition temperature was observed. The melting characteristics of one phase were influenced by the presence of the other. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 75–82, 2005  相似文献   

2.
Copolyesters containing poly(ethylene terephthalate) and poly(hexamethylene terephthalate) (PHT) were prepared by a melt condensation reaction. The copolymers were characterised by infrared spectroscopy and intrinsic viscosity measurements. The density of the copolyesters decreased with increasing percentage of PHT segments in the backbone. Glass transition temperatures (Tg). melting points (Tm) and crystallisation temperatures (Tc) were determined by differential scanning calorimetry. An increase in the percentage of PHT resulted in decrease in Tg, Tm and Tc. The as-prepared copolyesters were crystalline in nature and no exotherm indicative of cold crystallisation was observed. The relative thermal stability of the polymers was evaluated by dynamic thermogravimetry in a nitrogen atmosphere. An increase in percentage of PHT resulted in a decrease in initial decomposition temperature. The rate of crystallisation of the copolymers was studied by small angle light scattering. An increase in percentage of PHT resulted in an increase in the rate of crystallisation.  相似文献   

3.
D.R. Salem  N. Vasanthan 《Polymer》2009,50(7):1790-1796
Polyamide 66 fibers were thermoset in a torsion-bending deformation at various temperatures up to 240 °C. Some of the fibers were heat-set at constant length prior to the deformation at presetting temperatures of 150 °C and 200 °C to vary the structural state of the starting material. Fractional recovery was measured after various combinations of temperature and time. It was found that heat setting of PA66 is dominated by time-dependent stress relaxation exhibiting time-temperature equivalence. Increased crystallinity, and/or other molecular rearrangements occurring during presetting, impose additional constraints on molecular mobility, which delay onset of the flow regime and increase the time constant of relaxation at a given temperature. The thermosetting characteristics of PA66 fibers are very similar to those of poly(ethylene terephthalate) fibers. For both polymers, superposing the curves of fractional recovery vs. setting time at different temperatures produce satisfactory master curves, without the need for vertical shifting of the data. Arrhenius plots yield approximate activation energies for the thermosetting flow process of 35-65 kcal/mol in PA66 and 95-115 kcal/mol in PET.  相似文献   

4.
The semi-crystalline state of bulk-crystallized poly(ethylene terephthalate) and its relation to the melting behaviour of the polymer have been thoroughly investigated as a function of the thermal history by wide-angle X-ray diffraction. The experimental data, analysed according to the method of Ruland, allow estimation of the absolute degree of crystallinity and the diffuse disorder scattering. The results of this study give a better and more complete insight into the complex thermal behaviour of PET; moreover they corroborate the need for a broad experimental approach in studies related to the melting behaviour of polymers.  相似文献   

5.
The melting behaviour and the morphology of poly(ethylene terephthalate) crystallized from the melt are reported. In general, dual or triple melting endotherms are seen, and single endotherms are seen when the samples are crystallized above 215°C for long times. The location of the uppermost endotherm was found to be constant below Tc = 230°C, and above that temperature the location depends on Tc. Therefore, we have shown that samples of PET which are crystallized above Tc = 230°C contain perfect crystals only; below Tc = 230°C, they contain perfect and imperfect crystals. Scanning electron microscopy showed that the perfect crystals are the dominant lamellae in the spherulitic structure, while the imperfect crystals are the subsidiary lamellae in the spherulitic structure, The amorphous regions are located between individual lamellae.  相似文献   

6.
The mechanism of thermally induced elongation in poly(ethylene terephthalate) fiber spun at 3500 m min−1 has been examined. This partially oriented fiber has a crystalline content of about 25% and a high degree of orientation. The effect of time and tension during heat treatment was examined, and it was found that yarns that were allowed to relax during an initial brief heat treatment at 130°C subsequently elongated by up to 5% during a long heat treatment at the same temperature. Yarns that were not allowed to relax during the brief heat treatment did not elongate on subsequent heating. The morphological and mechanical changes associated with these processes have been studied using differential scanning calorimetry, X-ray diffraction (XRD), birefringence measurement, microscopy, and tensile testing. A large increase in crystallinity was observed during the brief heat treatment, but a much smaller increase took place during the long heat treatment. XRD indicated that substantial crystal reorganization occurred during both heat treatments, but c-axis growth was most significant in those materials that elongated during long heat treatment. It is proposed that it is this c-axis growth, in conjunction with conversion of disordered amorphous material into oriented crystalline material, that is responsible for the observed elongation. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 989–995, 1997  相似文献   

7.
Sorption isotherms for carbon dioxide in poly(ethylene terephthalate) have been measured at 35–55°C. The isotherms were measured gravimetrically on a Mettler Thermoanalyzer-1 from vacuum to 1 atmosphere. The sorption data were used to generate sorption isotherms from which the isosteric heat of sorption of CO2 in PET was determined. At 45°C the isosteric heat of sorption increases from −10 kcal/mole at a concentration of 0.5 cm3 (STP)/cm3 (polymer) to −8 kcal mole−1 at a concentration of 1.5 cm3 (STP)/cm3 (polymer). It has been reported in the literature that the isosteric heat of sorption for this system decreased through a minimum before increasing with increasing concentration. Our measurement of the low-pressure sorption isotherms shows that this is not the case.  相似文献   

8.
Poly(ethylene glycol) (PEG) and end‐capped poly(ethylene glycol) (poly(ethylene glycol) dimethyl ether (PEGDME)) of number average molecular weight 1000 g mol?1 was melt blended with poly(ethylene terephthalate) (PET) oligomer. NMR, DSC and WAXS techniques characterized the structure and morphology of the blends. Both these samples show reduction in Tg and similar crystallization behavior. Solid‐state polymerization (SSP) was performed on these blend samples using Sb2O3 as catalyst under reduced pressure at temperatures below the melting point of the samples. Inherent viscosity data indicate that for the blend sample with PEG there is enhancement of SSP rate, while for the sample with PEGDME the SSP rate is suppressed. NMR data showed that PEG is incorporated into the PET chain, while PEGDME does not react with PET. Copyright © 2005 Society of Chemical Industry  相似文献   

9.
PEN/PET共混物结晶行为研究   总被引:1,自引:0,他引:1  
用差示扫描量热法(DSC)研究了不同共混比例PEN/PET共混物的熔体结晶行为,并进行了等温结晶动力学测定。结果表明:随着两种组分向中间比例(50/50)靠近,共混物的熔融温度越低,结晶速率也越慢。  相似文献   

10.
Dimethyl carbonate (DMC) and poly(ethylene terephthalate) was simultaneously synthesized by the transesterification of ethylene carbonate (EC) with dimethyl terephthalate (DMT) in this paper. This reaction is an excellent green chemical process without poisonous substance. Various alkali metals were used as the catalysts. The results showed alkali metals had catalytic activity in a certain extent. The effect of reaction condition was also studied. When the reaction was carded out under the following conditions: the reaction temperature 250℃, molar ratio of EC to DMT 3 : 1, reaction time 3h, and catalyst amount 0.004 (molar ratio to DMT), the yield of DMC was 68.9%.  相似文献   

11.
Contour maps of dielectric loss tangent within the ranges 0.1 Hz to 3 MHz and ?175 °C to +190 °C are presented for a commercial poly(ethylene terephthalate) (PET) in two initial states of crystallinity. Individual absorption regions resemble those for poly(butylene terephthalate) and are attributed to carbonyl‐driven α‐ and β‐relaxation processes and to Maxwell–Wagner–Sillars polarizations. Possible causes are considered for the asymmetry and structure apparent in the α‐peak of partially crystalline PET. © 2001 Society of Chemical Industry  相似文献   

12.
13.
Poly(ethylene terephthalate) (PET) fibers with wide range of molecular orientation and crystallinity were prepared by the cold drawing of melt-spun yarns in a temperature-controlled water bath and the subsequent annealing for these samples. For all samples, the true stress-strain curves can be principally superimposed to a master curve which corresponds to the stress-strain curve for the original nonoriented amorphous yarn and it was confirmed that the original (intrinsic) network structure is not affected by molecular orientation and crystallinity significantly. Tensile properties of these fibers were studied systematically in terms of the network draw ratio which was determined as a shift factor in the matching process of a true stress-strain curve to the master curve. Consideration of the tensile drawing behavior has shown that the network draw ratio, which is defined as an extension of unique intrinsic network structure, has direct correlation with mechanical properties including the yield and breaking behaviors. When the network draw ratio is taken into consideration, PET fiber, even if it has crystallinity or molecular orientation, has appeared to behave in the manner of an almost ideal rubber during the tensile testing carried out as cold drawing. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 2631–2646, 1997  相似文献   

14.
Thermal expansion analysis of uniaxially-oriented poly(ethylene terephthalate) (PET) films has been carried out from 123 K up to the PET glass transition temperature, Tg. The films are prepared by solidstate co-extrusion, from different premorphologies (amorphous, 33% and 50% crystalline), to draw ratios (EDR) up to 4.4, over a wide temperature range (Text). The coefficients of linear thermal expansion exhibit anisotropy: normal to the draw direction (α) it increases, whereas along the draw direction (α) it always decreases with draw, independent of the initial morphology. Results are interpreted by treating PET as a simple two-phase composite structure. Tie-molecules occurring in the amorphous domains and bridging adjacent crystallites have a major influence. At EDR=4.4, a significant number of taut tiemolecules are developed, resulting in α becoming negative (αmax=?1.0×10?5°C?1) at temperatures below ambient. This appears to be the first report of a negative α for a polymer of relatively low crystallinity. Temperature for extrusion draw significantly affects α. Normal to the draw direction, α decreases with Text whereas α increases. The results show the thermal expansion of PET depends primarily on orientational effects. Only in the absence of anisotropy does per cent crystallinity have a dominant influence. In addition, the TMA thermograms display sharp transitions which are attributed to irreversible shrinkage of the oriented films. The shrinkage temperature (Ts) shows a strong dependence on both orientation and crystallinity, and it is discussed in association with Tg.  相似文献   

15.
Crystallization of a series of liquid crystalline copolyesters prepared from p‐hydroxybenzoic acid (HBA), hydroquinone (HQ), terephthalic acid (TA), and poly(ethylene terephthalate) (PET) was investigated by using differential scanning calorimetry (DSC). It was found that these copolyesters are more crystalline than copolyesters prepared from PET and HBA. Insertion of HQ–TA disrupts longer rigid‐rod sequences formed by HBA and thus enhances molecular motion and increases the crystallization rate. The effects of additives on the crystallization of the copolyesters were also studied. Sodium benzoate (SB) and sodium acetate (SA) increase the crystallization rate of the copolyesters at low temperature, but not at high temperature. It is most likely that liquid crystalline copolyesters do not need nucleating agents, and small aggregates of local‐oriented rodlike segments in nematic phase could act as primary nuclei. Chain scission of the copolyesters caused by the reaction with the nucleating agents was proved by the determination of intrinsic viscosity and by the IR spectra. Diphenylketone (DPK) was shown to effectively promote molecular motion of chains, leading to an increase in the crystallization rate at low temperature, but it decreased the crystallization rate at high temperature. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 497–503, 2001  相似文献   

16.
M. Yazdanian  I.M. Ward  H. Brody 《Polymer》1985,26(12):1779-1790
Procedures have been developed for quantitative infra-red spectroscopic measurements on poly(ethylene terephthalate) fibres in conventional yarns. Following computer reconstruction methods already established for films, measurements of molecular orientation and trans/gauche conformer content have been carried out for a wide range of fibres produced by different processing routes. The trans bands can be separated into load-bearing and non-load-bearing conformations, where the former govern the modulus. It is also shown that a quantitative measure of amorphous orientation can be obtained from the infra-red measurements. While there are similarities between the development of overall molecular orientation and changes in molecular conformation for high wind-up speed yarns and drawn yarns produced from a low wind-up speed yarn, there are also major differences, which confirms previous work showing that these two classes of fibres are basically different in structure. These differences are shown by the relationships between the load-bearing trans conformations and the amorphous orientation with the overall orientation.  相似文献   

17.
Proton spin-lattice, T1, and spin-spin, T2, relaxation times of poly(ethylene terephthalate) film annealed at various temperatures were measured using a broad line pulse spectrometer. The value of T1 is closely related to the crystallinity of the sample and only one T1 was observed for each sample, indicating that the spin diffusion is effectively operating. Even in the amorphous sample there are some nuclear spins, the motion of which is strongly restricted.  相似文献   

18.
Physical aging characteristics of poly(ethylene terephthalate) have been evaluated in relationship to volume fraction levels of crystallinity up to 25%. Changes in the enthalpies of relaxation, monitored at aging temperatures from 55 to 65°C, are found to give good fits with the Cowie‐Ferguson model. Overall equilibrium enthalpy of relaxation values decrease linearly with increased crystallinity. They increase with decreased aging temperature, providing extrapolated lower temperature results that are validated in terms of specific heat relationships. Activation energies for enthalpic relaxations are found to increase from 337 to 361 kJ/mole as crystallinity increases up to 25%. Overall relaxation endotherms are further resolved into contributions from interspherulitic and intraspherulitic amorphous regions. Interspherulitic, equilibrium enthalpies of relaxation decrease with increased levels of crystallinity, while intraspherulic values show corresponding increases. Characteristic relaxation times of the intraspherulic regions increase greatly, as levels of crystallinity increase; however, interspherulitic relaxation times decrease very slightly. Dynamic differential scanning calorimetry results show two glass transitions in the case of a 25% crystalline sample and a single transition for noncrystallized material. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

19.
Molecular weight increase via chain extension reactions of poly(ethylene terephthalate) with commercially available diepoxides was studied in a custom‐made laboratory scale reactor and a Brabender rheomixer under reactive blending conditions. The products were characterized by carboxylic end group analysis, intrinsic viscosity, and differential scanning calorimetry. PET was effectively modified in the laboratory‐scale reactor using cyclic diepoxides because the resulting polymers show intrinsic viscosities that are comparable to virgin PET (0.68–0.75 dL/g vs. 0.74 dL/g) and much higher than processed PET (0.55), while carboxyl contents were reduced to a third of that of the virgin PET. Diglycidyl ethers produced polymers displaying decreased viscosity values, increased carboxyl content, and lower melting points. Low concentrations of extender and short reaction times generally favored chain extension. In addition, purging with nitrogen resulted in chain extended polymers having the highest values of intrinsic viscosity ([η] = 0.79, 0.82). Similar trends were observed with modified products in the rheomixer having somewhat smaller viscosity values, larger carboxyl contents, and increased melting points. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 2121–2127, 1999  相似文献   

20.
Swollen-state polymerization of poly(ethylene terephthalate) in fibre form   总被引:1,自引:0,他引:1  
Susumu Tate  Yhoichi Watanabe 《Polymer》1995,36(26):4991-4995
The swollen-state polymerization of poly(ethylene terephthalate) in fibre form was performed in hydrogenated terphenyl as the swelling solvent. Ultra-high-molecular-weight poly(ethylene terephthalate) (CHMW-PET) fibre with an intrinsic viscosity of 3–4dl g−1 (Mn = 2–3 × 105) was obtained. The polymerization rate of as-spun PET fibres in the swollen state was greater than that of PET granules in the swollen state. It was clarified that the polymerization rate was related to the chain mobility of the starting materials. The chain mobility was influenced by various conditions, such as changing rigidity of the segments during copolymerization, the chain orientation of the starting fibre before swollen-state polymerization and the temperature of pretreatment with the solvent. Pretreatment with solvent before polymerization was effective in increasing the chain mobility. The relation between chain mobility and polymerization rate was examined by wide-angle X-ray diffraction, density, differential scanning calorimetry, solvent content and viscoelastic measurements. Undrawn UHMW-PET fibres could be drawn 10 times or more by the zone drawing technique in spite of their high crystallinity, and the drawn fibre showed high tensile strength (12 g d−1) and high modulus (240 g d−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号