首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Within the framework of a research project regarding investigations on a high-pressure Coriolis mass flow meter (CMF) a portable flow test rig for traceable calibration measurements of the flow rate (mass - and volume flow) in a range of 5 g min−1 to 500 g min−1 and in a pressure range of 0.1 MPa to 85 MPa was developed. The measurement principle of the flow test rig is based on the gravimetrical measuring procedure with flying-start-and-stop operating mode. Particular attention has been paid to the challenges of temperature stability during the measurements since the temperature has a direct influence on the viscosity and flow rate of the test medium. For that reason the pipes on the high-pressure side are double-walled and insulated and the device under test (DUT) has an enclosure with a separate temperature control. From the analysis of the first measurement with tap water at a temperature of 20 °C and a pressure of 82.7 MPa an extensive uncertainty analysis has been carried out. It was found that the diverter (mainly due to its asymmetric behaviour) is the largest influence factor on the total uncertainty budget. After a number of improvements, especially concerning the diverter, the flow test rig has currently an expanded measurement uncertainty of around 1.0% in the lower flow rate range (25 g min−1) and 0.25% in the higher flow rate range (400 g min−1) for the measurement of mass flow. Additional calibration measurements with the new, redesigned flow test rig and highly viscous base oils also indicated a good agreement with the theoretical behaviour of the flow meter according to the manufacturers׳ specifications with water as test medium. Further improvements are envisaged in the future in order to focus also on other areas of interest.  相似文献   

2.
Prism signal processing is a new recursive FIR technique that facilitates the rapid tracking of sinusoidal signals, such as those used in a Coriolis Mass Flow Meter (CMFM). A Prism-based CMFM prototype has been developed using a commercial flowtube and a dual ARM processor-based transmitter, which is capable of generating flow measurement updates at 48 kHz. This has been applied in a feasibility study to the tracking of fast (e.g. 1.5 ms) injections of diesel fuel on a laboratory rig at engine speeds of up to 4000 rpm equivalent and at fuel pressures of up to 100 MPa. Due to the high level of vibration in the system, Prism-based notch filtering is used to suppress undesired modes of flowtube vibration in the sensor signal. Individual flow pulses can be detected by the system, but the relatively long period of oscillation of the flowtube compared to the fuel injection duration results in a spreading out over time of each flow pulse measurement. More precise measurement results may be obtained using a higher frequency resonant flowtube.  相似文献   

3.
The paper describes a large load squeeze film damper (SFD) test rig, details measurements of dynamic loads inducing circular orbits conducted on a large clearance (c=0.250 mm) open ends centrally grooved SFD, and presents the identified experimental SFD force coefficients for operation at three static eccentricities. The rig has a bearing cartridge supported atop four elastic rods and a stationary journal, 0.127 mm in diameter. The damper consists of two parallel film lands, 12.7 mm in length, separated by a central groove, 6.35 mm 9.5 mm in depth. In the journal, three equally spaced holes, 120° apart, supply a light lubricant into the central groove and squeeze film lands. The experimental SFD force coefficients are compared to test results obtained earlier for a damper with the same film land lengths but with a smaller clearance (c=0.140 mm) and against predictions obtained from an advanced physical model that accounts for the flow field in the central groove and the interaction with the adjacent film lands. Dynamic pressures in the film lands and in the central groove are (not) surprisingly of the same order of magnitude. The central groove affects the dynamic forced response of the test damper to generate large direct damping coefficients, ~3.5 times those derived from classical lubrication formulas. Experimental added mass coefficients are ~7.4 times the predictive classical values. Predictions from an advanced model correlate well with the test data when using a shallow groove depth. The measurements and analysis advance knowledge on the dynamic forced performance of SFDs, point out to the limited value of simplistic predictive formulas, and validate the accuracy of a modern predictive tool.  相似文献   

4.
The calibration facility with the multi-nozzle calibrator was developed for the calibration of flow meters to be used with high-pressure, high-flow-rate hydrogen gas. The critical nozzles installed in the multi-nozzle calibrator were calibrated with traceability to the national standard. The relative standard uncertainty of the mass flow rates produced from the calibration facility is 0.09% when the flow rate is between 150 g/min and 550 g/min. In this study, the Coriolis flow meter was calibrated for a pressure range of 15–35 MPa. The relative standard uncertainty of the flow rates obtained from the Coriolis flow meter was 0.44% for the case of the worst fluctuations in the output of the flow meter; based on the calibration curve, this is 0.91%. The present result shows that there is a maximum 3% difference between the output of the Coriolis flow meter and the mass flow rates of the multi-nozzle calibrator, even though the Coriolis flow meter was calibrated using water. Therefore, for the development of a calibration facility that can calibrate a flow meter under the same conditions as those encountered in actual use, it will be important to develop a new flow meter.  相似文献   

5.
This research investigates the effects of flow pattern and salinity of oil-water two-phase flow on water holdup measurement using a conductance method. Firstly, vertical upward oil-water two-phase flow experiment is conducted in a 20 mm inner diameter (ID) pipe, in which the salinities of aqueous solutions are set as 151 ppm, 1003 ppm, 2494 ppm and 4991 ppm respectively. Experimental water-cut and mixture velocity are set as 80–100% and 0.0184–0.2576 m/s. In the experiment, three different flow patterns, i.e., dispersed oil-in-water slug flow (D OS/W), dispersed oil-in-water flow (D O/W) and very fine dispersed oil-in-water flow (VFD O/W) are observed and recorded by a high speed camera. Meanwhile, we collect the response of Vertical Multiple Electrode Array (VMEA) conductance sensor excited by a sine voltage signal. The result shows that, for VFD O/W, the water holdup from VMEA sensor shows a satisfied agreement with that of quick closing valve (QCV) method under certain salinities, i.e., 1003 ppm as well as 2494 ppm. For D OS/W flow and D O/W flow characterized by dispersed oil droplets with various sizes, considerable deviations of water holdup between VMEA sensor and QCV method under four kinds of salinity aforementioned are presented. Afterward, according to experimental analysis along with theoretical deviation, it is concluded that the deviation of the measurement system reaches its minimum when reference resistance in the measurement circuit and salinity of the aqueous solution satisfy constraint conditions, and the accuracy of water holdup using the conductance method can be improved through adjusting reference resistance to match the salinity of water phase. Finally, the recurrence plot algorithm is utilized to identify typical flow patterns mentioned above and it shows satisfied results on comprehending the discrepancies among different flow patterns, demonstrating that the recurrence plot algorithm can be effectively applied in flow pattern identification regarding oil-water flows.  相似文献   

6.
A pneumatic pressure proficiency test for effective area determination of a pressure balance was performed among 4 accredited calibration laboratories in Mexico. CENAM provided the reference values (making initial and final calibrations) and was the pilot laboratory. The Mexican Accreditation Entity (ema) collaborated. The participants calibrated, by cross floating, a Wika pressure balance model CPB 5000 with accuracy class 0.015% of the reading in the range 0.7–7 MPa. The calibration pressures were 0.7, 1.4, 2.1 3.5, 4.2, 5.6 and 7.0 MPa. For A0 and Ae, the normalized error equation was used to compare the results of the laboratories with CENAM’s reference values. The results obtained were satisfactory (En did not exceed the compatibility limit, −1  En  1).  相似文献   

7.
《Tribology International》2012,45(12):2013-2021
One of the alternative hydraulic fluid is water, which is environmentally acceptable, low-cost and non-flammable. We have designed a new hydraulic test rig and a new water proportional control valve to investigate the tribological and hydraulic behaviour of such water-based systems under pressures of up to 16 MPa and flows of up to 30 lpm. In this work, we present the lifetime performance of all-stainless-steel valve with distilled water being used as the hydraulic fluid. The results show that the water-based valve can operate for more than 10 million cycles under industrial relevant conditions if the water cleanness is appropriately maintained.  相似文献   

8.
Sintered and sintered/gas nitrided cylinders made of low alloyed chromium steel Astaloy CrL + 0.45 C at 7.25 g/cm3 density, have been tested for scuffing resistance and wear rate in a crossed cylinders test setup lubricated with a commercial SAE 10W40 engine oil at 90 °C. The results show large potential of 1 h gas nitriding of the sintered chromium steel cylinders. The nitrided cylinders experienced safe wear at 1000 MPa and scuffing at 1100 MPa at 2.5 m/s. At 0.5 and 0.1 m/s at least up to 800 MPa the wear was mild, as sintered chromium cylinders showed scuffing at pressure lower than 320 MPa and limited wear at 0.5 and 0.1 m/s.  相似文献   

9.
Previous work has described the use of Coriolis mass flow metering for two-phase (gas/liquid) flow. As the Coriolis meter provides both mass flow and density measurements, it is possible to resolve the mass flows of the gas and liquid in a two-phase mixture if their respective densities are known. To apply Coriolis metering to a three-phase (oil/water/gas) mixture, an additional measurement is required. In the work described in this paper, a water cut meter is used to indicate what proportion of the liquid flow is water. This provides sufficient information to calculate the mass flows of the water, oil and gas components. This paper is believed to be the first to detail an implementation of three-phase flow metering using Coriolis technology where phase separation is not applied.Trials have taken place at the UK National Flow Standards Laboratory three-phase facility, on a commercial three-phase meter based on the Coriolis meter/ water cut measurement principle. For the 50 mm metering system, the total liquid flow rate ranged from 2.4 kg/s up to 11 kg/s, the water cut ranged from 0% to 100%, and the gas volume fraction (GVF) from 0 to 50%. In a formally observed trial, 75 test points were taken at a temperature of approximately 40 °C and with a skid inlet pressure of approximately 350 kPa. Over 95% of the test results fell within the desired specification, defined as follows: the total (oil+water) liquid mass flow error should fall within ±2.5%, and the gas mass flow error within ±5.0%. The oil mass flow error limit is ±6.0% for water cuts less than 70%, while for water cuts between 70% and 95% the oil mass flow error limit is ±15.0%.These results demonstrate the potential for using Coriolis mass flow metering combined with water cut metering for three-phase (oil/water/gas) measurement.  相似文献   

10.
The paper describes the design, measurement results and uncertainty analyses of the hydraulic driven piston-prover system which has been in operation at VSL since 2008. The 12-meter long, 0.6 m bore piston-prover is used for the realization of Reference Values for Gas-Volume at pressures between 1 and 65 bar(a) at several gases. The principle is based on the displacement of a piston acting as a Gas–Oil separator. The standard has a flow-rate range from 5 to 230 m3/h. The system is designed to calibrate reference meters. The Calibration and Measurement Capability (CMC) of the system is proven to be smaller than 0.1% (k=2). The paper also explains the coherence between the Gas–Oil piston-prover and other traceability generators and ‘flow rate bootstrapper systems’.  相似文献   

11.
Low pressure drop thermal Mass Flow Controllers are generally thought to fulfill needs concerning the realization of a dynamic reference gas mixture generator for accurate gas analysis. A small air flow rate at low pressure drop must be controlled in a stable and precise way in the generator. True operative pressure drop limits, set point reproducibility, calibration needs and flow rate stability during operations were investigated for a low pressure drop thermal Mass Flow Controller. The flow rate bias due to late calibration and flow rate short-term stability were measured and discussed. The Allan method was used to calculate stability during operation. Calibration uncertainty, bias for late calibration, stability and set point reproducibility were composed to calculate the total uncertainty of the flow rate as a function of the operation time. Results show that it is possible to operate below the target uncertainty stated for a dynamic generator of gas mixtures down to 100 Pa pressure drop. Stability gives the main contribution to total uncertainty at very short operation times, while calibration uncertainty gives the main contribution to total uncertainty at normal operation times. The calibration uncertainty at 0.1% is low enough to assure the target uncertainty for operation times over 10 s. Daily verification of calibration enhances the reliability of the measurement. An accurate voltmeter is necessary for the reproducibility of the set point.  相似文献   

12.
On-line continuous monitoring of pulverized coal in fuel injection pipes will allow power plant operators to optimize fuel conveying conditions and ultimately to achieve higher combustion efficiency and lower atmospheric emissions. This paper presents the design, implementation and trials of a prototype instrumentation system for the on-line measurement of pulverized coal on a full-scale power plant. An array of three identical arc-shaped electrostatic electrodes is housed in a sensing head to derive particle flow signals. Pulverized coal flow parameters such as velocity, mass flow rate and fuel distribution among the injection pipes from the same pulverizing mill are obtained by processing the signals and fusing the resulting measurements. On-plant demonstration trials on 560 mm bore pneumatic conveying pipes feeding a 600 MW boiler were undertaken following system evaluation tests on a 50 mm bore laboratory test rig. Experimental results demonstrate that reliable monitoring of pulverized coal flow parameters is achieved and that the system is able to track both transient and long-term fluctuations of pulverized coal flow in fuel injection pipes under real power plant conditions.  相似文献   

13.
Five fully formulated wind turbine gear oils were characterised. The gear oils have 320 ISO VG grade and different formulations: ester, mineral, PAO, PAG and mineral+PAMA.A back-to-back FZG test machine, with re-circulating power, was used and a torque-cell was included on the test rig in order to measure the torque loss. Eight thermocouples were included to monitor the temperatures in different locations of the test rig.Tests at 1.13, 2.26 and 6.79 m/s were performed for different FZG load stages: K1, K5, K7 and K9. Both gearboxes were jet-lubricated with an oil flow of 3 l/min. The input flow temperature was kept almost constant (80 ±1 °C).Friction generated between the meshing teeth, shaft seals and rolling bearing losses was predicted.  相似文献   

14.
An automated, miniature, S-type Pitot tube system was created to obtain fluid velocity profiles at low flows in equipment having limited optical access, which prevents the use of standard imaging techniques. Calibration of this non-standard Pitot tube at small differential pressures with a custom, low-pressure system is also described. Application of this system to a vertical, high-pressure, water tunnel facility (HWTF) is presented. The HWTF uses static flow conditioning elements to stabilize individual gaseous, liquid, or solid particles with water for optical viewing. Stabilization of these particles in the viewing section of the HWTF requires a specific flow field, created by a combination of a radially expanding test section and a special flow conditioner located upstream of the test section. Analysis of the conditioned flow field in the viewing section of the HWTF required measurements across its diameter at three locations at 1 mm spatial resolution. The custom S-type Pitot tube system resolved pressure differences of <100 Pa created by water flowing at 5–30 cm/s while providing a relatively low response time of ~300 s despite the small diameter (<1 mm) and long length (340 mm) of the Pitot tube needed to fit the HWTF geometry. Particle imaging velocimetry measurements in the central, viewable part of the HWTF confirmed the Pitot tube measurements in this region.  相似文献   

15.
For the study of mixed lubrication in journal bearings, this paper employs a combined experimental and simulative approach. Extensive measurements on a journal bearing test rig with a low viscosity 0W20 multi-grade lubricant provide a solid basis which is complemented by experimental lubricant data that is measured under high pressure and high shear rates. In this paper, this data is used to investigate the impact of the piezoviscous effect and the non-Newtonian lubricant properties on the friction power losses in journal bearings over a wide range of dynamic loads and shaft speeds.In particular, this work seeks to predict the friction power losses for journal bearings under both moderate (50 MPa peak load) and high dynamic loads (100 MPa peak load) using the recently presented accurate numerical method (Allmaier et al., 2011 [1], Allmaier et al., 2013 [2]). From the direct comparison to the experimental data a key finding is that the simulation conforms very closely to the measured data. To be more exact, the agreement lies within the measurement uncertainty.Following this result, the influence of the often neglected piezoviscous effect and the non-Newtonian lubricant rheology is investigated. We conclude that both the piezoviscous effect and the non-Newtonian behaviour are essential to describe the lubrication with multi-grade lubricants in journal bearings. Only the consideration of both properties describes the experimental data very accurately over the entire range of operating conditions studied.  相似文献   

16.
The critical flow nozzle is widely used to calibrate flowmeters in gas flow measurement. Its use requires the critical flow factor, C*, a parameter dependent upon the thermophysical properties of the gas at the nozzle throat, and the upstream temperature and pressure. This paper presents C* values for four calibration gases (air, argon, nitrogen and methane), calculated from the most recent reference quality equations of state, over a wider range of temperature and pressure than previously available, 200–600 K and up to 20 MPa. In addition, a new empirical equation has been developed to represent the calculated values accurately, thus eliminating the need for complex calculations or interpolations from tables.  相似文献   

17.
We describe a flow standard for gas flows in the range from 0.01 sccm to 100 sccm with a relative standard uncertainty (68% confidence) of 0.03% at 1 sccm (1 sccm≡1 cm3/min of an ideal gas at 101325 Pa and 0 °C ≈ 0.74358 μmol/s). The flow standard calibrates a secondary meter by withdrawing a piston from a cylinder held at constant pressure P while gas flows from the secondary meter into the cylinder. The flow standard can operate anywhere in the range 10 kPa<P<300 kPa, and it can act as a flow source as well as a flow receiver. The flow standard incorporated features that improved its convenience and lowered its cost without sacrificing accuracy, specifically (1) dry sliding seals made with commercially available, easily replaced, o-rings, (2) a compact design based on a commercially available, hollow piston, and (3) a linear encoder with a small Abbe error.  相似文献   

18.
The importance of beam machining and extreme ultraviolet lithography technologies in the area of precise and fine machining used for high-density optical discs, integrated circuits and patterned media of hard disc drives (HDDs) is rapidly increasing.In this paper, a very simple vacuum-compatible rotary spindle is proposed that uses an ionic liquid as a lubricant with a very low vapor pressure. The usefulness of the proposed spindle lubricated by an ionic liquid was experimentally confirmed by measuring the partial pressures of outgassed products during rotation of the spindle in the vacuum chamber, measuring the accuracy of movement of the rotary table and machining circular grooves by an electron beam in a scanning electron microscope (SEM). It was found that the proposed spindle could be used in vacuum, and the partial pressures of outgassed products were almost the same as those of a clean, empty vacuum chamber. In addition, it was confirmed that by using the proposed spindle, circular grooves with diameters of 200 and 400 μm, 450 nm width and 40 nm depth could be machined on a photoresist surface coated on a silicon wafer in vacuum of an SEM.  相似文献   

19.
The paper presents an approach toward an enhancement of the measuring range of high-speed sensors for the measurement of liquid film thickness distributions based on electrical conductance. This type of sensors consists of electrodes mounted flush to the wall. The sampling of the current generated between a pair of neighboring electrode is used as a measure of the film thickness. Such sensors have a limited measuring range, which is proportional to the lateral distance between the electrodes. The range is therefore coupled to the spatial resolution. The proposed new design allows an extension of the film thickness range by combining electrode matrices of different resolution in one and the same sensor. In this way, a high spatial resolution is reached with a small thickness range, whereas a film thickness that exceeds the range of the high resolution measurement can still be acquired even though on the costs of a lower spatial resolution. A simultaneous signal acquisition with a sampling frequency of 3.2 kHz combines three measuring ranges for the characterization of a two-dimensional film thickness distribution: (1) thickness range 0–600 µm, lateral resolution 2×2 mm2, (2) thickness range 400–1300 µm, lateral resolution 4×4 mm2, and (3) thickness range 1000–3500 µm, lateral resolution 12×12 mm2. The functionality of this concept sensor is demonstrated by tests in a horizontal wavy stratified air–water flow at ambient conditions. Using flexible printed circuit board technology to manufacture the sensor makes it possible to place the sensor at the inner surface of a circular pipe.  相似文献   

20.
The production of Ni3Al was performed under an uniaxial pressure of 150 MPa at 1050 °C for 1 h. The formation temperature of Ni3Al was determined to be 655 °C. The presence of Ni3Al was confirmed by XRD analysis. SEM analysis revealed that the Ni3Al phase has very low porosity. The relative density and microhardness of test materials were 97.8% and about 359±31 HV1.0, respectively. The specific wear rate of Ni3Al was 0.029 mm3/N m for 2 N, 0.017 mm3/N m for 5 N and 0.011 mm3/N m for 10 N, respectively. The distribution of alloying elements was determined by energy-dispersive spectroscopy (EDS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号