首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
无纬布/网胎叠层针刺C/C材料的制备及性能   总被引:1,自引:0,他引:1  
以无纬布/炭纤维网胎叠层针刺预制体为增强体,经化学气相渗透(CVI)联合沥青浸渍/高压炭化(HPIC)方法制备了针刺C/C材料,研究了该材料的热力学性能,并与整体毡C/C材料进行了对比。结果表明:针刺C/C材料室温及2 800℃下轴向拉伸强度分别为24.50 MPa和52.88 MPa,较整体毡C/C材料分别提高了138%和170%,且拉伸破坏模式为假塑性。针刺C/C材料热物理性能优于整体毡C/C材料,1 000℃轴向热膨胀系数仅为1.409×10-6/℃,相比降低了64%。针刺C/C材料优异的机械强度和良好的热物理性能为其在固体火箭发动机中的应用奠定了基础。  相似文献   

2.
通过X-Y向拉伸强度、Z向剥离强力、NOL环整体拉伸强度表征预制体性能,研究了炭布叠层针刺预制体的结构特点.结果表明:X-Y向拉伸强度反映了针刺对连续纤维的损伤程度,其随针刺密度升高而降低.网胎面密度对Z向预制体剥离强力的影响规律性不明显,3 K炭布针刺预制体剥离强力高于6K和12K炭布针刺预制体,斜纹炭布针刺预制体剥离强力高于缎纹炭布预制体.NOL整体拉伸环破坏有完全断裂、褶皱式不完全断裂、层间剥离三种模式;3 K缎纹炭布针刺预制体NOL环拉伸强度最低,只有3 MPa,呈现整体拉伸完全断裂破坏模式;12 K缎纹炭布针刺预制体呈现层间破坏模式;6 K缎纹炭布针刺预制体的破坏方式为褶皱式不完全断裂模式,整体力学性能较好.相同工艺预制体环向拉伸强度远大于X-Y向拉伸强度.  相似文献   

3.
以高温煤沥青为浸渍剂,国产PAN基炭纤维编织的轴棒法预制体为增强材料,采用浸渍炭化致密工艺制备了沥青基炭/炭(C/C)复合材料,考察不同制备步骤下预制体致密效率的变化情况,并用扫描电子显微镜观察了C/C复合材料及基体炭的微观形貌。研究表明,随循环次数的增多,材料密度逐渐增大,密度增量逐渐减小;中间石墨化处理略微降低材料的密度,但材料的最终密度可大于1.90g/cm3。通过显微镜发现沥青基C/C复合材料内部在微观上仍存在少量裂纹和孔隙,基体炭的形态主要有区域型、流线型和镶嵌型。  相似文献   

4.
设计了两种不同结构的预制体,即碳布 碳毡(1#预制体)、无纬布 碳毡(2#预制体),经化学气相沉积(CVD)与浸渍树脂相结合的致密化工艺制备出了高密度的增强毡C/C复合材料.结果表明:1#、2#预制体制备的C/C材料表现出了良好的力学性能,其拉伸强度分别达61.25MPa和53.12MPa,其中2#材料的拉伸破坏表现出了假塑性.结合材料的微观形貌研究了预制体结构、界面对C/C复合材料拉伸性能的影响.  相似文献   

5.
以高温煤沥青为浸渍剂,国产PAN基炭纤维编织的轴棒法预制体为增强材料,采用浸渍炭化致密工艺制备了沥青基炭/炭(C/C)复合材料,考察不同制备步骤下预制体致密效率的变化情况,并用扫描电子显微镜观察了C/C复合材料及基体炭的微观形貌。研究表明,随循环次数的增多,材料密度逐渐增大,密度增量逐渐减小;中间石墨化处理略微降低材料...  相似文献   

6.
以2D碳纤维预制体为增强体, 采用电耦合和等温化学气相渗联合工艺制备C/C复合材料, 研究不同预制体结构对C/C复合材料及其螺栓力学性能的影响。结果表明, 不同预制体结构增强的C/C复合材料表现出不同的力学行为。对于针刺结构, 随着针刺密度由35 pin/cm 2降至25 pin/cm 2, C/C复合材料的拉伸、弯曲强度分别由60.1、119.9 MPa增大至69.5、176.8 MPa; 随着碳纱丝束由12 K变为3 K, C/C复合材料的拉伸、弯曲强度分别由69.5、176.8 MPa增大至105.5、184.4 MPa。对于12 K双向缝合结构, C/C复合材料的拉伸、弯曲强度分别为68.1、123.7 MPa。不同碳纤维预制体结构增强的C/C复合材料力学性能的差异主要取决于长纤维的完整性、大孔的分布和数量等因素。C/C复合材料的螺栓性能由于体材料性能和加工过程中缺陷的影响, 其拉伸强度略低于其体材料, 并表现出更为明显的脆性断裂模式。  相似文献   

7.
炭纤维针刺预制体增强C/SiC复合材料的制备与性能研究   总被引:2,自引:0,他引:2  
以炭纤维复合网胎针刺织物为预制体, 采用“化学气相渗透法+先驱体浸渍裂解法”(CVI+PIP)混合工艺, 制备了C/SiC陶瓷复合材料; 研究了针刺预制体的致密化效率以及复合材料的微观结构和力学性能, 并与目前常用的三维编织C/SiC复合材料和预氧丝针刺织物增强C/SiC复合材料进行了对比. 结果表明, 针刺预制体的致密化效率明显高于三维编织预制体, 在相同致密工艺条件下, 炭纤维针刺织物增强复合材料和预氧丝针刺织物增强复合材料的密度分 别达到2.08和2.02g/cm3, 而三维编织预制体增强复合材料的密度仅为1.81g/cm3. 炭纤维针刺复合材料的力学性能高于预氧丝针刺复合材料, 弯曲强度和剪切强度分别达到237和26MPa.  相似文献   

8.
采用针刺预制体经化学气相沉积与沥青浸渍-高压碳化致密工艺制备C/C复合材料,通过控制沥青浸渍-高压碳化致密次数,获得了密度分别为1.70 g/cm3、1.82 g/cm3、1.89 g/cm3的三种C/C材料,测试材料的力学、热学性能.结果表明材料拉伸强度随密度升高而降低.当密度较低时,纤维/基体界面结合强度相对较低,可以延缓纤维断裂的发生;拉伸断口显示出假塑性断裂特征,有利于材料拉伸强度的提高.材料的压缩强度与剪切性能密切相关,且均随密度升高表现出先升后降的趋势.材料的热膨胀系数随密度升高而增大,材料中微晶之间的空隙在受热过程中可以吸收一部分膨胀量,因此对于C/C材料,降低密度有利于降低热膨胀系数.材料导热系数随密度升高而明显增大,且随密度升高,微晶尺寸增大,有利于晶格振动的传递,从而使得导热系数增大.热应力因子随密度升高而先升后降,作为热结构件使用时,采用密度为1.82 g/cm3的C/C材料可以获得相对较高的抗热震能力.在C/C材料研究开发中,可以综合对材料力学、热学性能的要求来对C/C材料密度指标进行设计.  相似文献   

9.
张波  贺平照  肖春  周绍建 《材料导报》2017,31(Z1):351-354
采用化学气相沉积、沥青浸渍-高压碳化混合致密工艺向径棒法编织的预制体内引入基体碳,实现高密度(≥1.94g/cm3)炭/炭复合材料制备。利用快速通电加热测试技术,模拟C/C复合材料的高温工作环境,研究不同温度下材料的环向拉伸性能。结果表明:在2 300℃时,材料拉伸强度最大(80.3 MPa),断裂应变随着温度的升高而增加。采用扫描电镜对试样及断口形貌进行观察,发现测试温度、机加损伤及试样过渡区应力集中影响材料断裂特征。温度为1 800℃、2 300℃时材料在过渡区断裂;温度为2 800℃时,材料在标距区发生破坏,纤维与基体界面结合强度低,纤维拔出多,表现出假塑性断裂特征。  相似文献   

10.
炭纤维物理性能对C/C复合材料氧化性能的影响   总被引:5,自引:0,他引:5  
用相同牌号的T700炭布长纤维和炭毡短纤维交替叠层作为坯体,通过化学气相沉积(CVD)法生产二维C/C复合材料,尽管两种纤维具有很相近的结构和石墨化度,并经历相同的热处理过程,但同一C/C试样在随后的变温氧化和等温氧化过程中存在两个主要的氧化方向,一个是热解炭基体优先于炭布氧化,另一个是炭毡纤维优先于炭基体氧化。研究表明,两种纤维的物理性能(如表面积、孔径分布和总孔体积)有显著差别,即两种纤维的微孔结构和孔径分布有很大差别,从3-10nm,炭毡纤维的分布峰值比炭布纤维大得多,炭毡纤维的累积吸附孔体积的增长也比炭布纤维快,而且炭毡纤维的最大孔径比炭布纤维的大得多。正是这些因素使得炭布纤维比炭毡纤维具有更强的抗氧化性,导致了其抗氧化和氧化活性的明显不同。因此,即使炭布纤维和炭毡纤维具有相同的结构,并经过同样的热处理过程,在被用作坯体生产C/C复合材料前,应仔细考虑其物理性能。  相似文献   

11.
以炭毡为预制体,煤油蒸气为前驱体,利用两个热源分别加热预制体的上下表面,形成两个热梯度和双沉积面,第三个热源加热前驱体保证反应气体的供给,采用这种改进的化学液相气化渗入法快速制备了炭/炭(C/C)复合材料.对C/C复合材料的密度和气孔率进行了表征,并通过XRD,SEM等方法对其石墨化程度、显微结构进行了研究.结果表明:C/C复合材料的密度随沉积温度的升高呈线性增加,而气孔率逐渐减小,体积密度为0.2g/cm3的预制体在1100℃沉积3h后密度达到1.72g/cm3.2200℃热处理后,C/C复合材料的d002显著降低,具有较高的石墨化程度.C/C复合材料中的炭纤维被环状的热解炭所包围.沉积过程中前驱体较短的对流和扩散路径以及预制体中存在的上下热梯度和相应的双沉积面是材料快速制备的主要因素.  相似文献   

12.
采用薄膜沸腾CVI以双热源加热的方法在900~1200℃下热解二甲苯前驱体增密二维针刺炭毡预制体,30~35h内制备出密度1.70g/cm3~1.73 g/cm3的C/C复合材料。研究致密化过程中热解炭基体的沉积速率变化规律,应用排水法和偏光显微镜分别测试材料的密度及热解炭层的厚度。结果表明,当沉积温度由900~1000℃升高至1100~1200℃时,沉积前沿的厚度拓宽,热解炭的初始沉积速率增大,但高沉积温度下预制体边缘将优先完成致密化,导致材料的平均密度由1.72~1.73g/cm3降低至1.70,致密化均匀性变差,材料轴向和径向方向的密度偏差高于0.04g/cm3。上热源开多个轴向通孔可使沉积前沿的厚度减小,前驱体在预制体内的传输效率提高,进而改善较高沉积温度下材料的致密化效果。  相似文献   

13.
微波热解CVI法制备C/C复合材料   总被引:1,自引:0,他引:1  
在传统CVI工艺的基础上,提出了一种新的炭/炭复合材料沉积致密化技术-微波热解CVI工艺.该工艺采用微波炉加热炭毡预制体,预制体自身发热,并通过控制微波场强分布和热传导过程产生温度梯度,加上微波对极性分子的极化作用和对热解反应和表面沉积反应的催化作用,使预制体从中心至表面逐层快速致密.通过考察炭毡预制体经微波加热后的温度场分布和沉积样品的体积密度变化和径向密度分布,观察材料的微观结构,分析了预制体的致密化过程.结果表明:微波热解CVI工艺在1075℃~1150℃的沉积温度下,以甲烷为碳源前驱体,经90 h的热解沉积,成功制备出体积密度为1.70 g/nc3的炭/炭复合材料,平均致密化速率达到0.0189g/(cm3·h);避免了表面结壳现象,热解炭沿着纤维表面层状生长;采用该工艺制备了结构均匀、主要为中等织构的热解炭.  相似文献   

14.
以中间相沥青浸渍整体碳毡发泡技术制备的一种新型多孔C/C泡沫复合材料为预制体,通过液相硅浸渗(LSI)工艺制备了C/SiC复合材料,研究了预制体不同孔隙率对Si浸渗及C/SiC复合材料力学性能和微观形貌的影响,分析了复合材料的物相组成和晶体结构.结果表明,采用发泡技术可以快速有效地实现C/C预制体的致密化处理.预制体孔隙率为65.41%时液相硅浸渗处理后所得复合材料性能最好,密度为2.64g/cm3,弯曲强度为137MPa,弹性模量为150GPa.纤维未作表面抗硅化涂层处理以及复合材料中存在闭孔是C/SiC复合材料性能不佳的主要原因.  相似文献   

15.
粗糙层组织结构2D-C/C复合材料的制备及特性   总被引:2,自引:0,他引:2  
在沉积温度为1080-1200℃、沉积总压力为10 kPa和气体滞留时间为0.01 s的条件下,以天然气为碳源,以氮气为载气,使用新型ICVI工艺对预制体初始密度为0.43 g/cm3(纤维体积分数25%)的2D针刺整体炭毡进行致密化,在150 h内制备出表观密度为1.75 g/cm3的C/C复合材料.用偏光显微镜和高分辨扫描电镜观察了热解碳基体的微观组织结构,分析了三点弯曲试样的断口形貌.结果表明:制备的C/C复合材料具有粗糙层(RL)组织结构,试样的弯曲强度为164.77 Mpa、模量为21.34 Gpa,表现为阶梯式失效,断裂行为呈现出明显的假塑性.  相似文献   

16.
石墨化处理对不同高织构含量C/C复合材料微结构的影响   总被引:1,自引:0,他引:1  
采用化学气相沉积工艺制备出炭毡增强炭/炭(C/C)复合材料和3K炭布叠层增强C/C复合材料,并对材料进行2500℃高温石墨化处理。利用X射线衍射仪;偏光显微镜及拉曼光谱仪对所制材料进行表征。结果表明,炭毡C/C复合材料基体是单一的高织构(HT)热解炭,3K炭布叠层C/C复合材料的基体是带状组织,从纤维表面向外依次为各向同性热解炭、HT和中织构(MT)热解炭,其中HT含量低于50%;沉积态和热处理后,两种C/C复合材料都具有相似的石墨化度,且热处理后的石墨化度超过80%,但Lc值差异明显,炭纤维、MT和HT热解炭的La值均升高,其中HT热解炭升幅明显大于炭纤维和MT热解炭。HT热解炭的含量是导致这两种C/C复合材料具有相似石墨化度而Lc值却显著差异的原因。  相似文献   

17.
缪花明  刘荣军  王衍飞  李俊生  李端  万帆 《材料工程》1990,(收录汇总):142-148
采用不同面密度和丝束大小的碳纤维布,通过不同z向缝合方式编织了两种碳布叠层结构的碳纤维预制体,再经化学气相渗透法(chemical vapor infiltration,CVI)与气相渗硅法(gaseous silicon infiltration,GSI)联用制备了C/C-SiC复合材料。研究了碳纤维预制体结构对CVI-GSI C/C-SiC复合材料微观结构与力学性能的影响。结果表明,由纤维体积分数与C/C素坯密度都相同的预制体所制备的两种复合材料的密度、各相组成、结构与性能均大不相同。较小的碳纤维丝束(1K)和碳布面密度(92 g/m^(2)),以及锁式缝合留下的较大孔隙为GSI反应中Si蒸气的渗透提供了更加充足的通道,最终制备的T1复合材料孔隙率低、结构均匀、性能更高,其弯曲强度、模量和断裂韧度分别为300.97 MPa,51.75 GPa,11.32 MPa·m^(1/2)。初始预制体结构和C/C中间体结构的综合调控是CVI-GSI联用工艺制备高性能C/C-SiC复合材料的关键。  相似文献   

18.
采用Design-expert软件设计预制体不同针刺成型参数组合试验, 研究预制体针刺成型参数对针刺碳/碳(C/C)复合材料拉伸强度的影响, 并构建了响应曲面数学模型, 实现对针刺C/C复合材料拉伸强度的优化与预测, 其模型显著性P=0.0206, 各试验实测值与预测值相对误差≤10.82%, 模型具有较高的拟合度。响应曲面回归分析表明: 针刺深度对拉伸强度有极显著影响, 针刺密度对拉伸强度有显著影响, 在本研究的针刺成型参数取值范围内, 拉伸强度的预测区间为42.31~91.87 MPa。通过模型优化出的针刺成型参数组合为: 针刺密度11 pin/cm2、针刺深度 11 mm、网胎面密度50 g/m2, 相应拉伸强度预测值为88.62 MPa, 验证值为90.71 MPa, 相对误差2.36%。  相似文献   

19.
不同预制体结构炭/炭复合材料烧蚀性能   总被引:2,自引:0,他引:2       下载免费PDF全文
采用电弧驻点烧蚀实验方法, 测试了分别以细编穿刺毡和针刺无纬布整体毡为增强体的2种C/C复合材料的烧蚀率, 并用电子扫描显微镜观察了烧蚀表面形貌。结果表明: C/C复合材料的烧蚀由化学烧蚀和机械剥蚀共同控制, 以机械剥蚀为主; 细编穿刺毡结构C/C复合材料由于Z向纤维束的存在, 加速了材料烧蚀表面粗糙度的变化, 烧蚀率略高于针刺无纬布整体毡结构C/C复合材料; 针刺无纬布整体毡结构C/C复合材料中无纬布层与烧蚀气流垂直, 具有良好的烧蚀性能。   相似文献   

20.
以准三维针刺碳纤维预制体,经化学气相渗透(CVI)法制备了4种密度的C/C多孔体,利用先驱体浸渍裂解法(PIP)制备了C/C-SiC复合材料,研究了C/C多孔体对C/C-SiC复合材料制备和最终性能的影响。结果表明:C/C多孔体密度越低,最终得到的C/C-SiC复合材料开孔隙率及SiC含量较高。SiC的存在使C/C-SiC材料具有较高的弯曲强度,纤维和基体界面也是影响弯曲强度的关键因素,其中密度为1.35g/cm3的C/C多孔体所制备的C/C-SiC复合材料纤维和基体之间形成较好的结合界面,其弯曲强度最大。同时,SiC含量增加可显著提高C/C-SiC复合材料的抗烧蚀性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号