首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the continuous proliferation of sensing technology, it has become possible to utilize energy harvesting (EH)-enabled sensor nodes for a variety of applications. However, conventional wireless sensor networks (WSNs), that is, those without EH-enabled nodes, still have limited applicability due to their limited battery resources. Further, the utilization of EH-enabled nodes in the network not only imposes a financial burden on the user but also limits its performance due to its dependence on environmental conditions. To address this concern, in this paper, we propose the EH-enabled energy-efficient routing (EHEER) technique for green communication in WSN. The predominant concern being addressed in this paper is the selection of cluster head (CH), which helps in gathering, aggregating and forwarding the data from the cluster-based routing paradigm. We use the spotted hyena optimizer (SHO) algorithm for optimizing the fitness parameters for CH selection, namely, energy ratio, distance considerations, node density, load balancing and the network's average energy. We use EH-enabled nodes in the network strategically so as to keep control over the costs incurred in the network. The simulation outcomes empirically prove the efficacy of the proposed work, as it effectively increases the network stability and operational period by a huge margin as compared to the existing techniques.  相似文献   

2.

Optimization of energy consumption in the batteries of a sensor node plays an essential role in wireless Sensor networks (WSNs). The longevity of sensor nodes depends on efficiency of energy utilization in batteries. Energy is consumed by sensor nodes in WSNs to perform three significant functions namely data sensing, transmitting and relaying. The battery energy in WSNs depletes mainly due to sampling rate and transmission rate. In the present work, the most important parameters affecting the longevity of network are indentified by modeling the energy consumption. The parameters are expressed as a fuzzy membership function of variables affecting the life time of network. Fuzzy logic is used at multiple levels to optimize the parameters. Network simulator-2 is used for experimentation purpose. The proposed work is also compared with the existing routing protocols like Enhanced Low Duty Cycle, Threshold Sensitive Energy Efficient Sensor Network and Distributed Energy Efficient Adaptive Clustering Protocol with Data Gathering. The proposed solution is found to be more energy efficient and hence ensures longer network lifetime.

  相似文献   

3.
在无线传感器网络中,传感节点由于采用电池供电,因此寿命有限。如何有效节省传感器节点的能量,延长网络的使用寿命,一直是广泛研究的焦点。文章提出一种适用于高冗余度布置的无线传感器网络结构中,节省传感器节点能量消耗的方法-接续调度法。该方法通过协调点对小区域内节点的调度,使区域内节点依次分时段工作。通过这种接续调度,避免了节点间的冲突和串扰,达到延长整体网络寿命的效果。  相似文献   

4.
Wireless sensor networks (WSNs) have been widely investigated in the past decades because of its applicability in various extreme environments. As sensors use battery, most works on WSNs focus on energy efficiency issues (e.g., local energy balancing problems) in statically deployed WSNs. Few works have paid attention to the global energy balancing problem for the scenario that mobile sensor nodes can move freely. In this paper, we propose a new routing protocol called global energy balancing routing protocol (GEBRP) based on an active network framework and node relocation in mobile sensor networks. This protocol achieves global energy efficiency by repairing coverage holes and replacing invalid nodes dynamically. Simulation and experiment results demonstrate that the proposed GEBRP achieves superior performance over the existing scheme. In addition, we analyze the delay performance of GEBRP and study how the delay performance is affected by various system parameters.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Internet of Things (IoT) has got significant popularity among the researchers' community as they have been applied in numerous application domains. Most of the IoT applications are implemented with the help of wireless sensor networks (WSNs). These WSNs use different sensor nodes with a limited battery power supply. Hence, the energy of the sensor node is considered as one of the primary constraints of WSN. Besides, data communication in WSN dissipates more energy than processing the data. In most WSNs applications, the sensed data generated from the same location sensor nodes are identical or time-series/periodical data. This redundant data transmission leads to more energy consumption. To reduce the energy consumption, a data reduction strategy using neural adaptation phenomenon (DR-NAP) has been proposed to decrease the communication energy in routing data to the BS in WSN. The neural adaptation phenomenon has been utilized for designing a simple data reduction scheme to decrease the amount of data transmitted. In this way, the sensor node energy is saved and the lifetime of the network is enhanced. The proposed approach has been implanted in the existing gravitational search algorithm (GSA)-based clustered routing for WSN. The sensed data are transmitted to CH and BS using DR-NAP. Real sensor data from the Intel Berkeley Research lab have been used for conducting the experiments. The experiment results show 47.82% and 51.96% of improvement in network lifetime when compared with GSA-based clustered routing and clustering scheme using Canada Geese Migration Principle (CS-CGMP) for routing, respectively.  相似文献   

6.
Wireless sensor networks (WSNs) are a collection of several small and inexpensive battery-powered nodes, commonly used to monitor regions of interests and to collect data from the environment. Several issues exist in routing data packets through WSN, but the most crucial problem is energy. There are a number of routing approaches in WSNs that address the issue of energy by the use of different energy-efficient methods. This paper, presents a brief summary of routing and related issues in WSNs. The most recent energy-efficient data routing approaches are reviewed and categorized based on their aims and methodologies. The traditional battery based energy sources for sensor nodes and the conventional energy harvesting mechanisms that are widely used to in energy replenishment in WSN are reviewed. Then a new emerging energy harvesting technology that uses piezoelectric nanogenerators to supply power to nanosensor; the type of sensors that cannot be charged by conventional energy harvesters are explained. The energy consumption reduction routing strategies in WSN are also discussed. Furthermore, comparisons of the variety of energy harvesting mechanisms and battery power routing protocols that have been discussed are presented, eliciting their advantages, disadvantages and their specific feature. Finally, a highlight of the challenges and future works in this research domain is presented.  相似文献   

7.
For rechargeable wireless sensor nodes, effective power management is of prime importance because of the stochastic behaviour of the environmental resources. A key issue in integrating solar resources with wireless sensor networks (WSNs) is the need of precise irradiance measurements and power to resource modelling. WSNs are employed in an adhoc manner comprises of numerous sensing nodes and organised as a network for the sake of checking and balancing the environmental factors. Each node has sensing, computation, communication, and locomotion capabilities but operates with limited battery life. Energy harvesting is a way of powering these WSNs by harvesting energy from the environment. By considering harvested energy as an energy source, certain considerations are different from that of battery‐operated networks. Nondeterministic energy availability with respect to time is the reason behind these differences, which put a limit on the maximum rate at which energy can be used. Thus, reliable knowledge of solar radiation is essential for informed design, deployment planning, and optimal management of energy in rechargeable WSNs. Further, power management is essential in self‐powerssed networks to efficiently utilize the available energy. In this paper, a detailed survey on different solar forecasting techniques has been presented for precise energy estimates. A detailed study on energy efficient power management techniques is also proposed to address the feasibility of energy‐harvesting approach in WSNs.  相似文献   

8.
Designing energy efficient communication protocols for wireless sensor networks (WSNs) to conserve the sensors' energy is one of the prime concerns. Clustering in WSNs significantly reduces the energy consumption in which the nodes are organized in clusters, each having a cluster head (CH). The CHs collect data from their cluster members and transmit it to the base station via a single or multihop communication. The main issue in such mechanism is how to associate the nodes to CHs and how to route the data of CHs so that the overall load on CHs are balanced. Since the sensor nodes operate autonomously, the methods designed for WSNs should be of distributed nature, i.e., each node should run it using its local information only. Considering these issues, we propose a distributed multiobjective‐based clustering method to assign a sensor node to appropriate CH so that the load is balanced. We also propose an energy‐efficient routing algorithm to balance the relay load among the CHs. In case any CH dies, we propose a recovery strategy for its cluster members. All our proposed methods are completely distributed in nature. Simulation results demonstrate the efficiency of the proposed algorithm in terms of energy consumption and hence prolonging the network lifetime. We compare the performance of the proposed algorithm with some existing algorithms in terms of number of alive nodes, network lifetime, energy efficiency, and energy population.  相似文献   

9.
Reducing the energy consumption of sensor nodes and prolonging the life of the network is the central topic in the research of wireless sensor network (WSN) protocol. The low-energy adaptive clustering hierarchy (LEACH) is one of the hierarchical routing protocols designed for communication in WSNs. LEACH is clustering based protocol that utilizes randomized rotation of local cluster-heads to evenly distribute the energy load among the sensors in the network. But LEACH is based on the assumption that each sensor nodes contain equal amount of energy which is not valid in real scenarios. A developed routing protocol named as DL-LEACH is proposed. The DL-LEACH protocol cluster head election considers residual energy of nodes, distance from node to the base station and neighbor nodes, which makes cluster head election reasonable and node energy consumption balance. The simulation results of proposed protocols are compared for its network life time in MATLAB with LEACH protocol. The DL-LEACH is prolong the network life cycle by 75 % than LEACH.  相似文献   

10.
In studies of wireless sensor networks (WSNs), routing protocols in network layer is an important topic. To date, many routing algorithms of WSNs have been developed such as relative direction-based sensor routing (RDSR). The WSNs in such algorithm are divided into many sectors for routing. RDSR could simply reduce the number of routes as compared to the convention routing algorithm, but it has routing loop problem. In this paper, a less complex, more efficient routing algorithm named as relative identification and direction-based sensor routing (RIDSR) algorithm is proposed. RIDSR makes sensor nodes establish more reliable and energy-efficient routing path for data transmission. This algorithm not only solves the routing loop problem within the RDSR algorithm but also facilitates the direct selection of a shorter distance for routing by the sensor node. Furthermore, it saves energy and extends the lifetime of the sensor nodes. We also propose a new energy-efficient algorithm named as enhanced relative identification and direction-based sensor routing (ERIDSR) algorithm. ERISDR combines triangle routing algorithm with RIDSR. Triangle routing algorithm exploits a simple triangle rule to determine a sensor node that can save more energy while relaying data between the transmitter and the receiver. This algorithm could effectively economize the use of energy in near-sensor nodes to further extend the lifetime of the sensor nodes. Simulation results show that ERIDSR get better performance than RDSR, and RIDSR algorithms. In addition, ERIDSR algorithm could save the total energy in near-sensor nodes more effectively.  相似文献   

11.

The wireless sensor network (WSN) is always known for its limited-energy issues and finding a good solution for energy minimization in WSNs is still a concern for researchers. Implementing mobility to the sink node is used widely for energy conservation or minimization in WSNs which reduces the distance between sink and communicating nodes. In this paper, with the intention to conserve energy from the sensor nodes, we designed a clustering based routing protocol implementing a mobile sink called ‘two dimensional motion of sink node (TDMS)’. In TDMS, each normal sensor node collects data and send it to their respective leader node called cluster head (CH). The sink moves in the two dimensional direction to collect final data from all CH nodes, particularly it moves in the direction to that CH which has the minimum remaining energy. The proposed protocol is validated through rigorous simulation using MATLAB and comparisons have been made with WSN’s existing static sink and mobile sink routing protocols over two different geographical square dimensions of the network. Here, we found that TDMS model gives the optimal result on energy dissipation per round and increased network lifetime.

  相似文献   

12.
Energy-harvesting wireless sensor network (WSN) is composed of unreliable wireless channels and resource-constrained nodes which are powered by solar panels and solar cells. Energy-harvesting WSNs can provide perpetual data service by harvesting energy from surrounding environments. Due to the random characteristics of harvested energy and unreliability of wireless channel, energy efficiency is one of the main challenging issues. In this paper, we are concerned with how to decide the energy used for data sensing and transmission adaptively to maximize network utility, and how to route all the collected data to the sink along energy-efficient paths to maximize the residual battery energy of nodes. To solve this problem, we first formulate a heuristic energy-efficient data sensing and routing problem. Then, unlike the most existing work that focuses on energy-efficient data sensing and energy-efficient routing respectively, energy-efficient data sensing and routing scheme (EEDSRS) in unreliable energy-harvesting wireless sensor network is developed. EEDSRS takes account of not only the energy-efficient data sensing but also the energy-efficient routing. EEDSRS is divided into three steps: (1) an adaptive exponentially weighted moving average algorithm to estimate link quality. (2) an distributed energetic-sustainable data sensing rate allocation algorithm to allocate the energy for data sensing and routing. According to the allocated energy, the optimal data sensing rate to maximize the network utility is obtained. (3) a geographic routing with unreliable link protocol to route all the collected data to the sink along energy-efficient paths. Finally, extensive simulations to evaluate the performance of the proposed EEDSRS are performed. The experimental results demonstrate that the proposed EEDSRS is very promising and efficient.  相似文献   

13.
Wireless Sensor Networks (WSNs) have tremendous ability to interact and collect data from the physical world. The main challenges for WSNs regarding performance are data computation, prolong lifetime, routing, task scheduling, security, deployment and localization. In recent years, many Computational Intelligence (CI) based solutions for above mentioned challenges have been proposed to accomplish the desired level of performance in WSNs. Application of CI provides independent and robust solutions to ascertain accurate node position (2D/3D) with minimum hardware requirement (position finding device, i.e., GPS enabled device). The localization of static target nodes can be determined more accurately. However, in the case of moving target nodes, accurate position of each node in network is a challenging problem. In this paper, a novel concept of projecting virtual anchor nodes for localizing the moving target node is proposed using applications of Particle Swarm Intelligence, H-Best Particle Swarm Optimization, Biogeography Based Optimization and Firefly Algorithm separately. The proposed algorithms are implemented for range-based, distributed, non-collaborative and isotropic WSNs. Only single anchor node is used as a reference node to localize the moving target node in the network. Once a moving target node comes under the range of a anchor node, six virtual anchor nodes with same range are projected in a circle around the anchor node and two virtual anchor nodes (minimum three anchor nodes are required for 2D position) in surrounding (anchor and respective moving target node) are selected to find the 2D position. The performance based results on experimental mobile sensor network data demonstrate the effectiveness of the proposed algorithms by comparing the performance in terms of the number of nodes localized, localization accuracy and scalability. In proposed algorithms, problem of Line of Sight is minimized due to projection of virtual anchor nodes.  相似文献   

14.
Clustering is an indispensable strategy that helps towards the extension of lifetime of each sensor nodes with energy stability in wireless sensor networks (WSNs). This clustering process aids in sustaining energy efficiency and extended network lifetime in sensitive and critical real-life applications that include landslide monitoring and military applications. The dynamic characteristics of WSNs and several cluster configurations introduce challenge in the process of searching an ideal network structure, a herculean challenge. In this paper, Hybrid Chameleon Search and Remora Optimization Algorithm-based Dynamic Clustering Method (HCSROA) is proposed for dynamic optimization of wireless sensor node clusters. It utilized the global searching process of Chameleon Search Algorithm for selecting potential cluster head (CH) selection with balanced trade-off between intensification and extensification. It determines an ideal dynamic network structure based on factors that include quantity of nodes in the neighborhood, distance to sink, predictable energy utilization rate, and residual energy into account during the formulation of fitness function. It specifically achieved sink node mobility through the integration of the local searching capability of Improved Remora Optimization Algorithm for determining the optimal points of deployment over which the packets can be forwarded from the CH of the cluster to the sink node. This proposed HCSROA scheme compared in contrast to standard methods is identified to greatly prolong network lifetime by 29.21% and maintain energy stability by 25.64% in contrast to baseline protocols taken for investigation.  相似文献   

15.
Energy conservation of the sensor nodes is the most important issue that has been studied extensively in the design of wireless sensor networks (WSNs). In many applications, the nodes closer to the sink are overburdened with huge traffic load as the data from the entire region are forwarded through them to reach the sink. As a result, their energy gets exhausted quickly and the network is partitioned. This is commonly known as hot spot problem. Moreover, sensor nodes are prone to failure due to several factors such as environmental hazards, battery exhaustion, hardware damage and so on. However, failure of cluster heads (CHs) in a two tire WSN is more perilous. Therefore, apart from energy efficiency, any clustering or routing algorithm has to cope with fault tolerance of CHs. In this paper, we address the hot spot problem and propose grid based clustering and routing algorithms, combinedly called GFTCRA (grid based fault tolerant clustering and routing algorithms) which takes care the failure of the CHs. The algorithms follow distributed approach. We also present a distributed run time management for all member sensor nodes of any cluster in case of failure of their CHs. The routing algorithm is also shown to tolerate the sudden failure of the CHs. The algorithms are tested through simulation with various scenarios of WSN and the simulation results show that the proposed method performs better than two other grid based algorithms in terms of network lifetime, energy consumption and number of dead sensor nodes.  相似文献   

16.
In many wireless sensor network applications, it should be considered that how to trade off the inherent conflict between energy efficient communication and desired quality of service such as real-time and reliability of transportation. In this paper, a novel routing protocols named balance energy-efficient and real-time with reliable communication (BERR) for wireless sensor networks (WSNs) are proposed, which considers the joint performances of real-time, energy efficiency and reliability. In BERR, a node, which is preparing to transmit data packets to sink node, estimates the energy cost, hop count value to sink node and reliability using local information gained from neighbor nodes. BERR considers not only each sender’ energy level but also that of its neighbor nodes, so that the better energy conditions a node has, the more probability it will be to be chosen as the next relay node. To enhance real-time delivery, it will choose the node with smaller hop count value to sink node as the possible relay candidate. To improve reliability, it adopts retransmission mechanism. Simulation results show that BERR has better performances in term of energy consumption, network lifetime, reliability and small transmitting delay.  相似文献   

17.
Radio frequency energy transfer (RET) has been proposed as a promising solution to power sensor nodes in wireless sensor networks (WSNs). However, RET has a significant drawback to be directly applied to WSNs, i.e., unfairness in the achieved throughput among sensor nodes due to the difference of their energy harvesting rates that strongly depend on the distance between the energy emitting node and the energy harvesting nodes. The unfairness problem should be properly taken into account to mitigate the drawback caused from the features of RET. To resolve this issue, in this paper, we propose a medium access control (MAC) protocol for WSNs based on RET with two distinguishing features: energy adaptive (EA) duty cycle management that adaptively manages the duty cycle of sensor nodes according to their energy harvesting rates and EA contention algorithm that adaptively manages contentions among sensor nodes considering fairness. Through analysis and simulation, we show that our MAC protocol works well under the RET environment. Finally, to show the feasibility of WSNs with RET, we test our MAC protocol with a prototype system in a real environment.  相似文献   

18.
Wireless sensor networks (WSNs) are made up of many small and highly sensitive nodes that have the ability to react quickly. In WSNs, sink mobility brings new challenges to large-scale sensor networks. Almost all of the energy-aware routing protocols that have been proposed for WSNs aim at optimizing network performance while relaying data to a stationary gateway (sink). However, through such contemporary protocols, mobility of the sink can make established routes unstable and non-optimal. The use of mobile sinks introduces a trade-off between the need for frequent rerouting to ensure optimal network operation and the desire to minimize the overhead of topology management. In this paper, in order to reduce energy consumption and minimize the overhead of rerouting frequency, we propose an energy-aware data aggregation scheme (EADA) for grid-based wireless sensor networks with a mobile sink. In the proposed scheme, each sensor node with location information and limited energy is considered. Our approach utilizes location information and selects a special gateway in each area of a grid responsible for forwarding messages. We restrict the flooding region to decrease the overhead for route decision by utilizing local information. We conducted simulations to show that the proposed routing scheme outperforms the coordination-based data dissemination scheme (CODE) (Xuan, H. L., & Lee, S. Proceedings of the Sensor Networks and Information Processing Conference, pp. 13–18, 2004).  相似文献   

19.
The problems related to energy consumption and improvement of the network lifetime of WSN (wireless sensor network) have been considered. The base station (BS) location is the main concern in WSN. BSs are fixed, yet, they have the ability to move in some situations to collect the information from sensor nodes (SNs). Recently, introducing mobile sinks to WSNs has been proved to be an efficient way to extend the lifespan of the network. This paper proposes the assimilation of the fuzzy clustering approach and the Elephant Herding Optimization (EHO)‐Greedy algorithm for efficient routing in WSN. This work considers the separate sink nodes of a fixed sink and movable sink to decrease the utilization of energy. A fixed node is deployed randomly across the network, and the movable sink node moves to different locations across the network for collecting the data. Initially, the number of nodes is formed into the multiple clusters using the enhanced expectation maximization algorithm. After that, the cluster head (CH) selection done through a fuzzy approach by taking the account of three factors of residual energy, node centrality, and neighborhood overlap. A suitable collection of CH can extremely reduce the utilization of energy and also enhancing the lifespan. Finally, the routing protocol of the hybrid EHO‐Greedy algorithm is used for efficient data transmission. Simulation results display that the proposed technique is better to other existing approaches in regard to energy utilization and the system lifetime.  相似文献   

20.
WSNs have a wide range of applications, and the effective Wireless Sensor Network (WSN) design includes the best energy optimization techniques. The nodes in wireless sensor networks run on batteries. The existing cluster head selection methods do not take into account the latency and rate of wireless network traffic when optimizing the node's energy constraints. To overcome these issues, a self-attention based generative adversarial network (SabGAN) with Aquila Optimization Algorithm (AqOA) is proposed for Multi-Objective Cluster Head Selection and Energy Aware Routing (SabGAN-AqOA-EgAwR-WSN) for secured data transmission in wireless sensor network. The proposed method implements the routing process through cluster head. SabGAN classifiers are utilized to select the CH based on firm fitness functions, including delay, detachment, energy, cluster density, and traffic rate. After the selection of the cluster head, the malicious node gains access to the cluster. Therefore, the ideal path selection is carried out by three parameters: trust, connectivity, and degree of amenity. These three parameters are optimized under proposed AqOA. The data are transferred to the base station with the support of optimum trust path. The proposed SabGAN-AqOA-EgAwR-WSN method is activated in NS2 simulator. Finally, the proposed SabGAN-AqOA-EgAwR-WSN method attains 12.5%, 32.5%, 59.5%, and 32.65% higher alive nodes; 85.71%, 81.25%, 82.63%, and 71.96% lower delay; and 52.25%, 61.65%, 37.83%, and 20.63% higher normalized network energy compared with the existing methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号